
ANZ EGATE™
VIRTUAL PAYMENT

CLIENT INTEGRATION GUIDE

06.2021

Prepared By: ANZ

Department: Principal Consultant, eBusiness Solutions
Date

Written: 28 April 2021

Software Versions: MIGS Payment Server 2.4, Virtual
Payment Client 1.0

Document Revision #: 3.0

Before reading or using this Manual, please read our
disclaimer. By accepting or reading this Manual you agree
to be bound by the terms of the disclaimer.

Disclaimer
We may make improvements and/or changes to the
products and services described in this Manual at any time.

To the fullest extent permitted by any applicable law:

•	 We give no warranties of any kind whatsoever in relation
to this Manual including without limitation in respect of
quality, correctness, reliability, currency, accuracy or
freedom from error of this Manual or the products it
describes. All terms, conditions, warranties,
undertakings, inducements or representations whether
expressed, implied, statutory or otherwise relating in any
way to this Manual are expressly excluded.

•	 Without limiting the generality of the previous sentence
neither us nor our affiliates, employees, directors, officers
or third party agents will be liable to you for any direct or
indirect loss or damage (including without limitation
consequential punitive or special loss or damage)
however arising in respect of this Manual or any failure
or omission by us, even if we are advised of the
likelihood of such damages occurring.

•	 If we have to accept any liability our total aggregate
liability to you, including any liability of our affiliates,

collectively, and regardless of whether such liability is
based on breach of contract, tort, strict liability, breach
of warranties, failure of essential purpose or otherwise, is
limited to US$500.00.

•	 While we have no reason to believe that the information
contained in this Manual is inaccurate, we accept no
responsibility for the accuracy, currency or completeness
of the information in this Manual.

•	 We do not warrant or represent that we have checked
any part of this Manual that is a copy of information we
have received from a third party. We are merely passing
that information on to you.

License Agreement
The software described in this Manual is supplied under a
license agreement and may only be used in accordance
with the terms of that agreement.

Copyright
MasterCard owns the intellectual property in this Manual
exclusively. You acknowledge that you must not perform
any act which infringes the copyright or any other
intellectual property rights of MasterCard and cannot make
any copies of this Manual unless in accordance with these
terms and conditions.

Without our express written consent you must not:

•	 distribute any information contained in this Manual to
the public media or quote or use such information in the
public media; or

•	 allow access to the information in this Manual to any
company, firm, partnership, association, individual,
group of individuals or other legal entity other than
your officers, directors and employees who require
the information for purposes directly related to
your business.

2 – 3

Contents
Preface 	 6

What Is the Purpose Of This Guide 	 6
Who Should Read This Guide 	 6
Related Documents 	 6

Terminology Used in this Guide	 7
Where to Get Help 	 8

The Merchant Setup Process 	 9
Introduction to VPC 	 10

What is MIGS? 	 10
What is the Virtual Payment Client? 	 10

Steps to Integrating the VPC 	 11
MIGS Test Host Simulator 	 12
e-Payments 	 13

Working with e-Payments 	 13
Introduction to Processing Payments 	 13
e-Commerce Transaction Modes	 14
	 Payment Processing Modes 	 15
		 Purchase and Auth/Capture merchants 	 15
		 Subsequent or Financial Transactions 	 15
		 Integration Options 	 15
Server-Hosted transactions 	 16
	 Integrating Server-Hosted Payments 	 17
		 MIGS Processing of Server-Hosted Requests 	 17
		 Transaction response 	 17
		 What the Cardholder Sees 	 17
Merchant-Hosted Transactions 	 22
	 MOTO 	 22
	 Merchant Hosted Web Payment Pages 	 22
	 What the Cardholder Sees	 22

Best Practices 	 23
Best Practices for Securing the Data 	 23
	 Use a unique Merchant Transaction Reference ID for each transaction 	 23
	 Check that the field values in the transaction response match those in the transaction request 	 23
	 Check for a replay of a transaction 	 23
	 Check the integrity of a transaction using Secure Hash 	 23
Other Best Practices 	 23
	 MerchTxnRef 	 23
What is Merchant Administration? 	 25
Cannot utilise the Advanced Merchant Administration (AMA) functionality? 	 25
Receipt number (RRN), MerchTxnRef, AuthorizeId and TransactionId 	 25

Cardholder Authentication 	 26
MasterCard Identity Check/SecureCode and Visa Secure 	 26
	 Introduction 	 26
	 Authentication Process Flow 	 27
	 Server-Hosted Payment and Authentication Process Flow	 27

Payment Transactions for Server-Hosted Payments	 28
Transaction Request Fields 	 28
	 Required Transaction Request fields for a Server-Hosted Payment Request 	 28
	 Optional Transaction Request fields for a Server-Hosted Payment Request 	 29

	 Optional Merchant Defined Fields 	 30
	 Sending a Transaction Request for Server-Hosted Payments 	 30
Transaction Response Fields 	 31
	 Required Transaction Response fields for Server-Hosted Payment Response 	 31
	 Optional Transaction Response fields for Server-Hosted Payment Response 	 34

Payment Transactions for Merchant-Hosted Payment 	 38
Transaction Request Fields 	 38
	 Required Transaction Request fields for Merchant-Hosted Payment Request 	 38
	 Optional Transaction Request fields for Merchant-Hosted Payment Request	 39
	 Sending a Transaction Request for Merchant-Hosted Payments	 41
	 Transaction Response Fields	 41
	 Required Transaction Response fields for Merchant- Hosted Payment Response	 41
	 Optional Transaction Response fields for Merchant-Hosted Payment Response 	 43

Advanced Functionality Fields	 44
Capture	 44
	 Transaction Request Fields - Capture	 44
	 Transaction Response Fields - Capture 	 45
Refund	 47
	 Transaction Request Fields - Refund	 47
	 Transaction Response Fields - Refund	 48
QueryDR Transaction	 50
	 Transaction Request Fields – Query DR	 50
	 Transaction Response Details – Query DR 	 50
Bypass Card Selection Page on the Payment Server 	 51
	 Transaction Request Fields - Bypass Card Selection Page 	 51
	 Transaction Response Fields - Bypass Card Selection Page 	 51

Troubleshooting and FAQs	 52
Troubleshooting 	 52
	 What happens if a Transaction Response fails to come back? 	 52
	 What to do if a Session Timeout occurs? 	 53
	 Does the Cardholders Internet browser need to support cookies? 	 53
	 How do I know if a transaction has been approved? 	 53
Frequently Asked Questions	 53
	 Can the Payment Servers payment pages be modified for a Merchant?	 53
	 Is a Shopping Cart required? 	 53
	 Does the Payment Server handle large peaks in transaction volumes? 	 53
	 How long will an authorisation be valid on a cardholder account? 	 53
	 What is the RRN and how do I use it? 	 53
	 RRN, MerchTxnRef, OrderInfo, AuthorizeId and TransactionId 	 53

Appendix 3 – Test Environment	 54
Test Cards	 54
Response Codes	 54
Issuer Response Code Mapping	 55

4 – 5

List of Tables
Required Transaction Request fields for a Server - Hosted Payment Request	 28
Optional Transaction Request fields for a Server - Hosted Payment Request	 29
Required Transaction Response fields for Server - Hosted Payment Response	 31
Optional Transaction Response fields for Server - Hosted Payment Response	 34
Adding Secure Hash to a Transaction Request Example	 36
Adding Secure Hash to a Transaction Response Example	 37
Required Transaction Request fields for Merchant - Hosted Payment Request	 38
Optional Transaction Request fields for Merchant - Hosted Payment Request	 39
Sending a Transaction Request using the Post Method Example	 41
Required Transaction Response fields for Merchant - Hosted Payment Response	 41
Optional Transaction Response fields for Merchant - Hosted Payment Response	 43
Transaction Request Fields - Capture	 44
Transaction Response Fields - Capture	 45
Transaction Request Fields - Refund	 47
Transaction Response Fields - Refund	 48
Transaction Request Fields - Query DR	 50
Transaction Response Details - Query DR	 50
Transaction Request Fields - Bypass Card Selection Page	 51

List of Figures
Merchant Simulator Infrastructure	 12
How a transaction is processed	 14
Information for Server - Hosted pages	 16
What the Customer sees in a Server-Hosted transaction	 18
The Shop & Buy Checkout Page	 18
MIGS Payment Server’s Payment Options Page	 19
The MIGS Payment Server’s Payment Details Page	 19
The MIGS Payment Servers Payment Pending Page	 20
The MIGS Payment Servers Redirection Page	 20
The merchants Shop & Buy’s Receipt Page	 21
Information Flow in Merchant-Hosted transaction	 22
Diagram Showing Information Flow	 24
Server-Hosted Payment and Authentication Process Flow	 27
What happens if a transaction response fails to come back	 52

Preface
What Is the Purpose of This Guide
This Merchant Integration Guide describes the Virtual
Payment Client (VPC) API (Application Programming
Interface) which allows you to payment enable your
e-commerce application or on-line store. It seeks to guide
you on how to use the functionality of the Virtual Payment
Client API. The document describes Version 1.0 of the
Virtual Payment Client API.

In addition, the guide outlines the business logic around
payment processing on the MIGS Payment Server and how
to use the VPC to perform payment processing and, if
required, integrated administration functions.

Who Should Read This Guide
The MIGS Virtual Payment Client API provides an easy to
use, low integration effort solution for payment enabling
web-sites, e-commerce applications and online stores. The
solution uses standard web technology allowing
merchants to integrate payment capabilities into their
online store without installing or configuring any payments
software making it suitable for most website hosting
environments.

This guide is specifically aimed at business analysts and
integrators who want to effectively integrate the VPC into
merchant applications, and merchant bank personnel who
will be involved with the support of the process.

Related Documents
To complete the merchant offering, transactions processed
through MIGS via the Virtual Payment Client Guide can be
administered via the MIGS Merchant Administration portal.
To understand what this portal offers, readers should
reference the MIGS Merchant Administration Guide.

6 – 7

Terminology Used in this Guide

Access Code The access code is an identifier that is used to authenticate you as the merchant while you
are using the Virtual Payment Client. The access code is generated and allocated to you by
MIGS when you are established as a merchant on the server.

Acquiring Bank Where your business account is maintained and settlement payments are deposited. This is
normally the same bank with which you maintain your merchant facility for your online
credit card payments.

Capture A capture is a transaction that uses the information from an authorisation transaction to
initiate a transfer of funds from the cardholder’s account to you (the merchant’s) account.

Issuing Bank The financial institution that issues payment card to customers.

Merchant
Administration

Merchant Administration allows you to monitor and manage your electronic transactions
through a series of easy to use, secure web pages.

Payment Provider The Payment Provider acts as a gateway between your application or website and the
Acquiring Bank.
It uses the Payment Server to take payment details (Transaction Request) from your
cardholder and checks the details with the cardholder’s bank. It then sends the Transaction
Response back to your application. Approval or rejection of the transaction is completed
within seconds, so your application can determine whether or not to proceed with the
cardholder’s order.
Your Payment Provider may be your acquirer bank or a third party services provider.

Payment Server The Payment Server is the MasterCard Internet Gateway Service (MIGS). MIGS facilitates the
processing of secure payments in real-time over the Internet between your online store/
website and your bank. All communications between the cardholder, your online store, the
Payment Server and the bank is encrypted, making the whole procedure not only simple and
quick, but also secure.

Purchase Purchase is a single transaction that debits the funds from a cardholder’s credit card account
and credits these funds to the merchants account. The transfer of funds occurs after the
end-of-day settlement between the card-issuing bank and the merchant’s bank.

RRN The RRN (Reference Retrieval Number) is a unique number generated by the payment
provider for a specific merchant ID. It is used to retrieve original transaction data and it is
useful when your application does not provide a receipt number.

Secure Hash Secret Secure Hash Secret plays a role in security as it is used to detect whether the transaction
request and response has been tampered with. The Secure Hash Secret is generated
automatically and assigned to you by MIGS when you are established as a merchant on the
server. It is a unique value for each merchant and made up of alphanumeric characters. Only
your MIGS know what the secure hash secret value is. Your secure hash secret is added to the
transaction request details before an SHA256 algorithm is applied to generate a secure hash.
The secure hash is then sent to MIGS with the transaction request details. Because MIGS is
the only other entity apart from you that knows your secure hash secret, it recreates the
same secure hash and matches it with the one that you sent. If they match MIGS continues
processing the transaction. If it does not match it assumes that the transaction request has
been tampered with, and will reject the request.

The Secure Hash Secret can be accessed using Merchant Administration. Please see the
Merchant Administration Guide for more information.

Transaction Request This is also called the Digital Order (DO) and is a request from the Virtual Payment Client to
the Payment Server to provide transaction information.

Transaction Response This is also called the Digital Receipt (DR) and is a response from the Payment Server to the
Virtual Payment Client to indicate the outcome of the transaction.

Virtual Payment Client
(VPC)

The Virtual Payment Client is the interface that provides a secure method of communication
between your online store and the Payment Server, which facilitates the processing of
payments.

Transaction A combination of a Transaction Request and a Transaction Response. For each customer
purchase or order, merchants may issue several transactions.

Where to Get Help
Should you require assistance with Virtual Payment Client Integration, please contact ANZ using the below details:

Phone: 1800 039 025 - 24/7

Email: ANZeCommerceSupport@anz.com - response time is 1 business day.

8 – 9

The Merchant Setup Process
The following table guides you through the basic steps to payment enable an online store, assuming that ANZ Merchant
Services has approved your ANZ eGate Merchant Facility.

Table 1 What the merchant needs to do to process payments from an online store

Step 1

Receive the Integration support material and documentation from your bank
The Virtual Payment Client integration support material issued to assist you during your integration and set up phase
includes the following:
a)	 Virtual Payment Integration Guide
b)	Example code

Step 2

Obtain your Access Code and Secure Hash Secret from Merchant Administration
a)	 Access Code
	� The access code uniquely authenticates a merchant and their Merchant ID on the Payment Server.
b)	Secure Hash Secret
	� If you are using Server-Hosted Payments, the Secure Hash Secret is a key used as the initial piece of encryption data to

create an SHA256 Secure Hash to ensure transaction data is not tampered with while in transit to the Payment Server.
Your access code and secure hash secret can be found in Merchant Administration in the Setup menu option on the
Configuration Details page. Please refer to the ANZ eGate VPC Integration notes – ‘Obtaining eGate Access Code & Secure
Hash’ for details on how to locate your Access Code and Secure Hash Secret.

Step 3

Perform a basic payment using the supplied example code
You can perform a basic test payment using the example code provided. Successful completion of a payment using the
example code validates that your system is set up correctly, and ensures basic functionality is available before
implementing the integration with your online store. The example code covers common web server scripting languages.
You will need to select the appropriate example for your specific web environment.

Step 4

Design and implement the integration
You are now ready to payment enable your online store. This step requires a web developer familiar with both your online
store and the web programming language used in integrating the Virtual Payment Client.
This guide provides the reference information and best practise guidelines to assist you with this task. You may also refer
to the example code for further assistance.

Step 5

Test your integration
You need to test your integration by performing test payments. MIGS has a test bank facility to test all the different response
codes that you are likely to encounter in a live environment. Performing test transactions validates that you have correctly
integrated the Virtual Payment Client with your online store and that your application handles common response codes and
error conditions. For more information, please refer to the Test Card information supplied at the end of this document.

Step 6

Go Live
Once you are satisfied that your integration works correctly, change the configuration of your website from test mode to
live production mode. This includes changing the ANZ eGate Merchant ID, Access Code & Secure Hash Secret in your
integration. Refer to the ANZ eGate VPC Integration notes – ‘Obtaining eGate Access Code & Secure Hash’ for details on
how to locate your Access Code and Secure Hash Secret.
The production profile allows you to process live transactions with ANZ.

Step 7

Conduct final Pre-Production testing.
It is recommended that you follow standard IT practices and complete final pre-production testing to validate that
end-to-end functionality works correctly, including successful settlement of funds from ANZ.

Step 8

Commence live processing of online payments.
You should now be ready to launch your payment enabled online store and start processing online payments from
your customers.

Introduction to VPC
What is MIGS?
MIGS is the MasterCard Internet Gateway Service. MIGS is
provided to banks to facilitate online card payments where
the card is not presented to the merchant (called Card-Not-
Present, or CNP).

You have been provided this document because ANZ has
implemented MIGS as their processing server for CNP
transactions.

What is the Virtual Payment Client?
The MIGS Virtual Payment Client is a mechanism for
merchants to connect to the MIGS. It is termed ‘Virtual’ to
contrast it to the Payment Client itself, but the VPC is a
connection mechanism only – there is no supplied client
software.

This manual outlines instructions for connecting your
application to the MIGS Payment Server via this VPC
connection mechanism.

10 – 11

Steps to Integrating the VPC
Before you start integrating, you will need to determine if your online store supports the functions that you require. Your
online store will determine the transaction types you can or cannot integrate.

Step 1

You need the following support material and information:
a)	 This Guide
b)	Example Code for your site (written in ASP, JSP, PHP and Perl)
c)	 Access Code
d)	Secure Hash Secret (only used for Server-Hosted Payments).

Step 2

Determine which integration model you will be using?
You need to know whether you are using:
•	 Server-Hosted Payments Integration Model (3 party), or
•	 Merchant-Hosted Payments Integration Model (2 party).

Step 3

Determine which Payment Model you will be using, Purchase or Authorisation/Capture
•	 Purchase – requires a single transaction to transfer funds from the cardholder’s account to your account.
•	 Authorisation/Capture – requires two transactions, the Authorisation, followed separately by a Capture.

Step 4

Determine if you will be using any Advanced functionality?
The available advanced functionality includes:
•	 Verified-by-Visa and MasterCard SecureCode
•	 Capture
•	 Refund
•	 QueryDR

Step 5

Perform a basic transaction using the supplied example code
You can perform a basic test payment transaction using the example code provided. Successful completion of a
transaction using the example code validates that your system is set-up correctly and ensures basic functionality is
available before you implement the integration with your online store. The standard example code covers common web
server scripting languages. You need to select the appropriate example for your specific web environment.

Step 6

Determine how you are going to get the transaction request input fields and where to store the transaction response
output fields in your online store.
You need to consider:
•	� Session Variables - some online stores may require session variables to be collected and sent to the Virtual Payment

Client in the transaction request. The session variables are returned in the transaction response allowing your online
store to continue with the order process

•	� Merchant Transaction Reference (vpc_MerchTxnRef) - You need to determine how you are going to produce a unique
value for a transaction using the vpc_MerchTxnRef field.

Step 7

Design and implement the integration
You are now ready to payment enable your online store. This step requires a web developer familiar with both your online
store and the web programming language used in your web environment.
This guide provides the reference information and best practice guidelines to assist you with this task. You may also refer
to the example code for further assistance.

Step 8

Test your integration
You need to test your integration by performing test transactions. MIGS The Payment Server has a test acquirer facility to
test all the different response codes that you are likely to encounter in a live environment.

Performing test transactions allows you to test your integration, so that you won’t encounter problems when processing
real transactions. For more information, please refer to the Test Environment Section of this document.

MIGS Test Host Simulator
The Host Simulator module provides a comprehensive
transaction testing facility for the all VPC supported
functions.

The merchant simply prefix’s their merchant ID (which will
be supplied to you by ANZ) with the word ‘TEST’ to initiate
the routing of all transactions received from their
application to the Test Host Simulator module. Full sets of
test logs are written to the Merchant Administration Portal
so that the Merchant can view and validate test results.

Exception handling is tested by simulating different
responses from the MIGS Payment Server. Responses can
be varied by using different values in the payment. For
example, $10.00 will return an ‘Approved’ by the MIGS
Server, while $10.51 will return ‘Insufficient Funds’. Please
refer to Appendix 1 for a full list of codes.

Once the transaction testing cycle has been completed
successfully the code can be copied to the merchant’s
production system application. Once installed in the
production system and all necessary ANZ processes have
been completed, the merchant can access the Live Link by
removing the word ‘TEST’ from their merchant ID. The
merchant’s test profile will remain and can be accessed for
further testing.

Figure 1: Merchant Simulator Infrastructure

MIGS Payment Server

Perform
Test Cycle

Merchant Application
Test System

Copy
Code to
Production
System

Payment
Gateway

Payment
Adapter

Bank Host
or

BANKNET

Internet

Production
MerchantID

TEST
MerchantID

Test Host
Simulator

12 – 13

e-Payments
Working with e-Payments
MIGS enables a merchant to perform secure transactions
over the Internet. To do this they need to integrate the Host
Application (Shop and Buy application) with the MIGS
Virtual Payment Client.

The Virtual Payment Client is a series of commands
available to the Host Application through an API
(Application Program Interface). It interacts with the MIGS
Payment Server, which processes secure transactions in
real-time over the Internet.

The Virtual Payment Client is a remote interface to the
MIGS Payment Server, which processes the secure
transactions sent by the VPC.

Introduction to Processing Payments
The typical payment process for Internet purchases is:

1.	 The cardholder purchases goods or services from a
merchant using the Internet.

2.	 The merchant’s online store sends a Virtual Payment
Client transaction request via the MIGS Payment Server
for authorization and processing.

3.	 MIGS directs the transaction to the cardholder’s issuing
bank for authorisation of the payment. The cardholder’s
account is debited and the funds are transferred to the
merchant’s account

As the Virtual Payment Client is designed primarily for
processing payments from Internet sites, this guide
presents information for enabling an online store. But it is
also possible to payment enable other channels such as call
centres or IVR systems using advanced functions of the
Virtual Payment Client but it is not supported by ANZ.

e-Commerce Transaction Modes
Processing an e-Commerce Transaction
During a transaction, the funds are transferred from the
cardholders account to the merchants account in the
following steps:

1.	 The cardholder purchases goods or services from a
merchant via the internet, over the phone, etc.

2.	 The merchant sends the request for payment to MIGS,
which processes the transaction on behalf of the
merchant, by switching the transaction authorisation
request to the card issuer (the customers bank) (3).

3.	 The card issuing institution adjusts the cardholder’s
credit limit for the funds and returns the result to MIGS.
MIGS passes the result of the transaction on to the
merchant.

4.	 Periodically (normally once a day), these records are
transferred by MIGS to ANZ.

5.	 The merchant’s bank settles the transaction with the
issuing (Cardholder’s) bank as part of normal credit card
processing.

6.	 The issuing bank adds an entry to the cardholder’s
statement for subsequent payment by the cardholder.

7.	 The acquiring bank deposits the funds into the
merchant’s bank account.

Payment Framework

Merchant

Card Holder

MIGS

Issuing Bank

Acquiring Bank

Real Time

Batch

Figure 2: How a transaction is processed

5

6

3

42

7

1

14 – 15

Payment Processing Modes

Purchase and Auth/Capture merchants

Purchase Merchant
Purchase mode transactions capture funds in a single
transaction and the funds are immediately transferred into
the merchant’s account when the merchant’s bank settles
the transaction. Each instance of a purchase transaction
will show up on the customer’s card statement.

Auth/Capture Merchant
Auth/Capture merchants perform at least two transactions
to capture the funds from the customer’s card and deposit
them in the merchant’s account.

•	 The authorisation (Auth) transaction verifies that the
card details are correct and will also reserve the funds for
that merchant.

•	 The capture transaction refers back to the initial
authorisation transaction, and instructs the transfer of
the funds from a customer’s card into the merchant’s
account.

The merchant can perform more than one capture
transaction, for example the merchant may not have the
full ordered amount of goods in stock but ships what they
do have. Later, when they ship the remaining goods the
merchant can perform another capture transaction that
refers back to the initial authorisation transaction which
transfers the remaining funds to the merchant’s account.

This auth reservation of funds will reserve the funds for a
predetermined period of time, (such as 5 days), as
determined by the issuing bank.

Please check with your bank if you are unsure in which
mode you are operating.

Subsequent or Financial Transactions
For every order there is normally one shopping transaction.
Each shopping transaction may require a number of
associated financial transactions, for example, captures
and refunds. Financial transactions represent the flow of
information between the customer, the merchant and the
bank when purchasing goods and services.

Subsequent transactions can capture or refund
transactions.

Refunds are where the merchant re-credits funds back to a
customer’s card. In this case both transactions are listed on
the cardholder’s statement.

The merchant can perform as many capture and refund
transactions as they want providing the total amount
captured does not exceed the original auth transaction.
You must have captured the funds before you can perform
a refund (i.e. the original transaction was a purchase or an
authorised transaction that has been captured), otherwise
an error will occur.

Integration Options
There are two integration options for collecting credit card
details on the MIGS Payment Server. However, your bank
may not support both options. Please check with ANZ on
which option(s) you are allowed to use.

The 2 options are:

1.	 Server-Hosted – (Internet only with possible
authentication) Only possible from a web application,
such as a merchant shop & buy application or e-mail, as
the customer can only input their credit details direct to
MIGS via a web page that is displayed from the MIGS
Payment Server.

2.	 Merchant-Hosted – (Internet or Mail Order/Telephone
Order (MOTO)) Used for any merchant application, such
as a merchant web shop & buy application or a call
centre operation, where the merchant collects the card
details.

Server-Hosted transactions
Server-Hosted transactions use the Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) protocol to provide
secure transmission of sensitive data between a customer’s
web browser and the MIGS Payment Server.

1.	 A customer 1 and 6 decides to purchase goods and
enter details into the merchant’s shop and buy
application software at the checkout page.

2.	 The customer pays for the goods and the merchant
software sends a Virtual Payment Client transaction
request to the MIGS Payment Server, using an Access
Code which is unique to each merchant. In addition,
data integrity is protected by use of a Secure Hash
Secret 2 .

3.	 The MIGS Payment Server receives the customer’s card
details 3 and displays a series of screens. The first
screen displays the cards supported by the processor
supports, for example MasterCard, Visa, and American
Express. The customer chooses the card type they want
to use for the transaction. The second screen accepts the
details for the chosen card such as card number, card
expiry, a card security number if required.

4. 	� The MIGS Payment Server passes the details 4 to the
card issuing institution. When the payment has been
processed, the MIGS Payment Server temporarily
displays the result of the transaction before displaying
the final screen, which asks the customer to please wait
while they are redirected back to the merchant’s site
(see page 22) and the MIGS Payment Server passes the
result back to the merchant’s site detailing the result of
the transaction 5 . This information is then passed back
to the user for their records 6 .

The MIGS Virtual Payment Client is a set of commands
which all the sending and receiving of this data from the
MIGS Payment Server via browser redirects.

In a Server-Hosted transaction, the customer’s browser
connection is completely severed from the merchant
application, so any session variables that are required to
identify the current session must be collected and sent to
the MIGS Payment Server, where they are returned
appended to the result message.

Server-Hosted Page - Information Flow

Card Holder

Merchant
• VPC Integration

• �Shopping Cart Application

• Web Server

Payment
Server

Payment Adapter

Virtual Payment Client

Merchant Admin

VPC Response

VPC Request

Payment Options/Details

Bank

4

5

2

1

6

3

Figure 3: Information for Server-Hosted pages

16 – 17

Integrating Server-Hosted Payments
To process a payment using Server-Hosted Payments your
online store needs to be integrated with the Virtual
Payment Client in order to send the transaction request
and handle the transaction response.

To do this you need to do the following:

1.	 Collect the minimum required information for a
transaction request. This will include your merchant ID,
your access code, the order amount, a transaction
reference number and an optional order information
field. You may require additional information when using
optional features.

2.	 Formulate a transaction request.

3.	 Add any session variables required by the online store to
resume the order process with the cardholder after the
transaction request has been processed.

4.	 Calculate the secure hash and append it along with the
Secure Hash type to the transaction request.

5.	 Redirect the cardholders Internet browser using the
transaction request you just created.

At this point the cardholder session with your online store
is interrupted while the cardholder submits their card
details directly to the MIGS Payment Server.

MIGS Processing of Server-Hosted Requests
When a transaction request arrives at the MIGS Payment
Server by redirecting the cardholder’s Internet browser, it
checks to make sure the Merchant Access Code is correct
for the merchant ID and also checks if the secure hash is
present. If both are correct, the Payment Server:

•	 Displays the card selection page (normally branded by
ANZ) for the cardholder to choose their card type.

•	 Accepts the cardholders card details for the selected
card type.

•	 Processes the transaction request and notifies the
merchant’s bank of the status of the transaction so the
funds can be settled into the merchant’s account.

•	 Sends back a transaction response to your website page
nominated in the transaction request indicating whether
the transaction was successful or declined.

•	 The MIGS Payment Server can also return error messages
back, if for example there is a communication error in
the banking network and the transaction cannot
proceed.

•	 If either the Merchant Access Code, Secure Hash Type or
the Secure Hash are incorrect, the MIGS Payment Server
returns a transaction response back to your website
page nominated in the transaction request with a
response code and a message detailing the error.

Transaction response
The transaction response is returned to your website using
an Internet browser redirect as specified in the vpc_
ReturnURL field. The transaction response will always have
a secure hash for the online store to check data integrity.

The online store needs to process the transaction response
by checking the secure hash received from the Payment
Server is correct:

•	 Check the value of the vpc_TxnResponseCode.

•	 If this is equal to ‘7’ then the MIGS Payment Server has
detected an error related to the message and you need
to handle this condition.

•	 If this is equal to ‘0’ then the transaction was completed
successfully and you can display a receipt to the
cardholder.

•	 If it is equal to any other value, the transaction has been
declined and this must be declared to the cardholder.
The action taken in this event (suggesting a retry with
another card, suggesting another payment method etc.)
can be determined by the merchant.

If the value of the secure hash and Secure Hash Type
received is not equal to the hash value calculated from the
data, the data may have been tampered with in the
redirection process and you should check the transaction
response data against the original transaction request.

For example, you should check that the transaction
amount is the same as what you sent originally.

The online store response page needs to be able to handle:

•	 Successful transactions

•	 Declined transactions

•	 Error Conditions – if vpc_TxnResponseCode equals ‘7’ an
error has occurred.

All three of these conditions are valid responses that occur
back from the MIGS Payment Server. The next section
provides you with an overview of securing your payments.

What the Cardholder Sees
In a Server-Hosted transaction (without authentication,
covered later in this guide) the cardholder is presented
with six pages:

1.	 The Merchant’s web-site checkout page

2.	 The MIGS Payment Server’s Payment Options page

3.	 The MIGS Payment Server’s Payment Details page

4.	 The MIGS Payment Server’s Payment Pending page

5.	 The MIGS Payment Server’s Redirection page

6.	 The Merchant’s web-site receipt page.

Examples of these pages are shown below

What the Customer sees in a Server-Hosted transaction

The Shop & Buy Checkout Page

The checkout page displays the line items that the customer wants to purchase and the total amount to pay, including
any delivery charges and taxes. The customer accepts the amount and proceeds to the MIGS payment pages to enter their
card details.

Merchant Web Site MIGS
Server-Hosted (Payment Only)

1. Checkout and Redirection

6. Merchant Receipt

2. Payment Options

5. Result and Redirection

3. Payment Details

4. Result Pending

18 – 19

The MIGS Payment Server’s Payment Details Page

On the Payment Details page, the customer enters their card details, including the card number and expiry date, and clicks
the pay button. MIGS then processes the payment.

MIGS Payment Server’s Payment Options Page

The payment options page presents the customer with the card types the merchant accepts. The customer clicks a card type
and proceeds to the Payment Details page.

The MIGS Payment Servers Payment Pending Page

As the payment processor is processing the payment, a payment pending page can be displayed to the customer.

The MIGS Payment Servers Redirection Page

The redirection page is displayed in the customer’s browser and the Digital Receipt is passed to the merchant’s shop and
buy application.

20 – 21

The merchants Shop & Buy’s Receipt Page

The shop and buy receives the Digital Order and creates a Digital Receipt as a receipt page is displayed to the customer.

Merchant-Hosted Transactions
There are 2 types of merchant hosted transactions.

MOTO
MOTO (Mail Order/Telephone Order) transactions are
purchase/auth transactions orders where the customer
provides their card details to a merchant, via mail order or
by telephone (including Interactive Voice Response (IVR)
systems).

Merchant Hosted Web Payment Pages
The merchant has the option of providing their web-site
own payment pages for collecting the card details. The
customer provides their payment details (card type, card
number and expiry date) directly to the merchant.

Merchant-Hosted transactions carry a higher risk than
Server-Hosted transactions, as the customer’s card details
are captured and stored by the merchant.

1. 	 A customer 1 , 5 purchases goods or services.

2. 	� The merchant collects the card details using the
Internet, IVR, mail order or telephone order and
submits the details to be processed via the Virtual
Payment Client 2 .

3. 	� The message is sent over the Internet to the MIGS
Payment Server 3 .

	 The message includes the purchase amount, card details
(submitted to the merchant), and a merchant-specified
transaction reference.

4. 	� The issuing bank processes the information and passes
the result back to the MIGS Payment Server. This result,
which includes the transaction results and payment
reference details, is sent from the MIGS Payment.

Server back to the merchant’s site page specified in the
outgoing request 4 where it is processed. A receipt is also
passed back to the customer for their records 5 .

The basic inputs used for a Merchant-Hosted transaction
are:

•	 CardNumber – The card number or the customer.

•	 CardExpiry – The expiry date of the card.

•	 MerchantId – The merchant identifier allocated by their
bank.

•	 MerchTxnRef – Identifies this particular transaction on
the MIGS Payment Server. This should be a unique value
for each transaction attempt, which makes it easy for
the merchant to track transactions.

•	 Amount – Contains the value of this transaction. It is an
integer that expresses the value in the lowest currency
denomination, for example, cents, pence and yen.

In a Merchant-Hosted transaction, session variables are not
sent to the MIGS Payment Server because the merchant’s
session is always maintained.

What the Cardholder Sees
In a Merchant-Hosted transaction the cardholder is
presented with two pages:

1.	 The merchants shop and buy checkout page.

2.	 The merchants shop and buy receipt page.

The MIGS Payment Server does not display any pages in a
Merchant-Hosted style transaction, as all pages are
displayed by the merchant’s application.

Merchant- Hosted Information Flow

Card Holder

Merchant

Payment Server

VPC Response
(Results from
Form POST)

VPC Request
(Form POST)

Payment
Adapter

Virtual Payment
Client

Merchant Admin

Bank

42

3

1

5

VPC Integration

Figure 4: Information Flow in Merchant-Hosted transaction

22 – 23

Best Practices

Best Practices for Securing the Data
This section describes the security features available for
the Virtual Payment Client. It is recommended that you
understand this section before you start integrating

All websites collecting sensitive or confidential information
need to protect the data passed between the browser and
the MIGS Payment Server. The Payment Server is
responsible for securing the cardholder details when you
implement the Server-Hosted Payments Integration Model.
It uses Secure Sockets Layer (SSL) or Transport Layer
Security (TLS), which encrypts sensitive financial data
between a cardholder and the Payment Server.

SSL (Secure Sockets Layer) and Transport Security Layer
(TSL) is a security technology that is used to secure server
to Internet browser transactions. This includes the securing
of any information passed by an Internet browser (such as a
cardholder’s credit card number) to a web server (such as
your online store or MIGS). SSL protects data submitted
over the Internet from being intercepted and viewed by
unintended recipients.

There are three security issues that apply to a payment:

•	 Confidentiality – To protect important information such
as credit card numbers.

•	 Identification/Authentication – To ensure that
transaction requests are going to the MIGS Payment
Server and that the transaction response came from the
MIGS Payment Server.

•	 Integrity – When you send and receive messages, you
need to be sure that they are not being altered. In
Server-Hosted Payments, the transaction request and
response is sent by redirecting the cardholder’s Internet
browser providing an opportunity for the cardholder to
modify details if best practice suggestions in this section
are not followed.

Common Best Practices to ensure Transaction Integrity
The following Best Practices are guidelines only. It is
recommended that you consult with security experts with
experience in your web environment to ensure that your
security is suitable for your needs.

Use a unique Merchant Transaction Reference ID for each
transaction
Each transaction should be assigned a unique transaction
reference ID. Most online stores and web programming
environments will generate a unique session ID for each
cardholder, which can be used as the unique transaction
reference ID. You can alternatively create a unique reference
ID by combining a unique order number with a payments
attempt counter. You may also consider appending a
timestamp to the transaction reference ID to help ensure
that each one is unique. Before sending a cardholder to the
Payment Server, you should store this unique transaction
reference ID with the order details in your online store
database. The merchant transaction reference ID is returned
in the transaction response and allows you to match the
response against the order. The unique transaction
reference ID is required to provide transactional integrity,
protect against replay attacks and aid in reconciliation.

Check that the field values in the transaction response
match those in the transaction request
You should ensure that important fields such as the
amount in the transaction response and the merchant
transaction reference ID match up with the values in the
original order.

Check for a replay of a transaction
You should check each transaction response to ensure that
your unique Merchant Transaction Reference ID matches
the order, and that it does not correspond with any
previous order that has already been processed.

Check the integrity of a transaction using Secure Hash
The Secure Hash is used to prevent the cardholder from
modifying a transaction request and response when
passing it through the cardholder’s browser. Using the
Secure Hash ensures a high level of trust in the transaction
result. The benefit of using Secure Hash is that the integrity
of each response can be checked without having to create
a new SSL or TSL connection to the MIGS Payment Server
for each transaction. If you have network restrictions that
do not allow an outbound socket from your site, then you
should use this process. The Secure Hash Secret must be
kept secret to provide security and should be changed
periodically for this method to be effective. The Secure
Hash method is only applicable when using the Server-
Hosted Payments integration model.

Other Best Practices

MerchTxnRef

Unique value
MerchTxnRef is normally used for querying an exact
transaction on the MIGS Payment Server. In a case where
the merchant requires to know the specific result of a
transaction, for example, when a Digital Receipt is not
received by the merchant, then the MerchTxnRef is used to
locate the details.

Although MIGS allows any reference to be entered with a
shopping transaction, it is advised that some unique
identifier is used by the merchant to allow an easy
cross-reference with the merchant’s host system.

A example of a MerchTxnRef would be the merchant’s
unique order number assigned to each sale. This allows the
merchant to look up the transaction on MIGS with the
same reference used to lookup the transaction on their
own host system. To guarantee uniqueness, different
payment operations on the same sale need also to be
identified, as stated below.

Identifying Payment Attempts
If a transaction for a sale is declined, and a subsequent
attempt is made to process a payment for this sale, the
merchant should modify the MerchTxnRef for each
subsequent attempt, by appending extra characters for
each attempt. For example, MerchTxnRef = ‘1234/1’ on first
attempt, ‘1234/2’ on second attempt, and ‘1234/3’ on third
attempt, etc. This is the preferred way of implementing a
unique MerchTxnRef. Because under a fault condition, such
as if the Digital Receipt does not arrive back at the
merchant’s site, you may need to check if the transaction
was carried out successfully.

Automated lookups and financial operations cannot be
performed if the merchant has not given each transaction
attempt a unique MerchTxnRef number, as there will be
multiple results showing the same MerchTxnRef.

Sending Session Variables to the MIGS Payment Server
In a Server-Hosted transaction, the customer browser’s
connection is completely severed from the merchant
application. Some merchant applications use session
variables to keep track of where the shop and buy
application is up to and to prevent unauthorised entry
without the customer signing in. This stops hackers from
spoofing transactions.

Session variables that are required to identify the current
session so the MIGS Payment Server can return to the
merchant’s program from where it left must be collected
and sent to the MIGS Payment Server. The session variables
are not used by the MIGS Payment Server, but are returned
appended to the response. There can be as many session
variables as required using any name the merchant shop
and buy application needs, providing they legally conform
to HTTPS protocols. To make them conform to the
standard, URL, you need to encode all session variables
before sending them.

To send them to the MIGS Payment Server the merchant
must append them to the merchant ReturnURL.

At the MIGS Payment Server, the merchant session
variables are recovered and temporarily stored in the
MIGS Payment Server with the other transaction variables.
They are sent back to the merchant appended to the
response at the completion of the transaction.

The merchant shop and buy application recovers the
session variables from the response, and uses them to
restore the merchant session. The session continues as
though it had never been broken.

Receipt Failure
The two ways of dealing with a digital receipt that fails to
come back are:

•	 Flag the transaction as having an error that the merchant
needs to manually check using Merchant Administration
on the Payment Server.

•	 Utilise Advanced Merchant Administration (AMA)
commands to search the MIGS Payment Server database
for the transaction by using the QueryDR command if
MerchTxnRef is unknown. The MerchTxnRef is used as
the transaction identifier when searching using
QueryDR.

Because the Digital receipt has failed to come back, there is
no transaction number available from the Payment Server
to identify the transaction in question. This is why you use
the MerchTxnRef. It is important to have a unique
MerchTxnRef for every transaction otherwise the query
could return multiple results. Only the most recent
transaction is returned in the QueryDR command if there
are multiple results, but this may not be the transaction
you are looking for.

When you find the required MerchTxnRef value in the
QueryDR (vpc_DRExists = Y), this indicates the transaction
request was received by eGate. Proceed based on
returned value in vpc_TxnResponseCode, where ‘0’ is
approved and a number which is not ‘0’ is not approved.
Please refer to Appendix 3, Issuer Response Code Mapping
table for more details.

If you do not find the required MerchTxnRef in the
QueryDr (vpc_DRExists = N), this indicates the transaction
request was not received by eGate. The API or the
Merchant makes the decision on the next action which may
be to repeat the transaction. It is suggested to generate a
different MerchTxnRef in this case.

If the QueryDR is flagged as having multiple results
(returns ‘Y’ in the MultipleResults field), the MerchTxnRef is
not unique.

Figure 5: Diagram Showing Information Flow

Diagram Showing Information Flow

Attempt
transaction

Is there a vpc_
TxnResponseCode?

(I.e Approved/
Declined)

API uses
MerchantTxnRef

for AMA QueryDR
command for

transaction

Checkout page
reflects response

received

Check eGate if
transaction request

was received

Transaction
was not
received

End

End

API/
Merchant

makes
decision on
next action

If not
another

transaction
attempt

Update API
to show

transaction
failed/

cancelled

Update
MerchantTxnRef
for unique value

Re-attempt
transaction

If another
transaction

attempt
A

No
response

Response received

No
transaction

found

If
transaction

found

A

24 – 25

What is Merchant Administration?
Merchant Administration is the Internet based portal,
which allows merchants to monitor and manage their
on-line processing and administration of payments
through a series of easy-to-use pages.

To use Merchant Administration, you need to have access
to the Internet through a browser (such as Internet
Explorer). You also need the MIGS URL (or web site address).

The merchant can use one of two methods to manage their
transactions:

•	 Merchant Administration - using a browser interface to
interactively perform historical searches, captures,
refunds and to perform setup activities. For more details,
please refer to the Merchant Administration User Guide.

•	 Advanced Merchant Administration - using the
Payment Client to directly access the MIGS Payment
Gateway to perform all transaction-related actions (for
example, captures, refunds and voids) integrated with
merchants’ software interfaces.

Cannot utilise the Advanced Merchant Administration
(AMA) functionality?
The following reasons may cause AMA functionality to not
work:

•	 A separate operator needs to be created for AMA API
calls

•	 Your merchant account is required to have the privileges
to execute AMA functions, please check with the
helpdesk that this is enabled for your merchant account.

•	 Advanced admin methods privilege has to be enabled in
operator set-up in Merchant Administration. An AMA
operator cannot connect to Merchant Administration
unless the AMA privilege is removed.

•	 Check that you are not using incorrect merchant ID,
operator ID or password details.

Receipt number (RRN), MerchTxnRef, AuthorizeId and
TransactionId
•	 The Receipt Number (RRN) is normally a unique number

for a particular Merchant ID generated by the bank. This
is the value that is passed back to the customer for their
records. You cannot search for this field in Merchant
Administration or using AMA, but it is displayed in
Merchant Administration on the transaction details
pages as the Reference Retrieval Number (RRN).

•	 MerchTxnRef is generated by the merchant shop and
buy application. Ideally it should be a unique value for
each transaction, and the merchant should retain this
number so that transaction can be traced within the
merchant’s application and the MIGS Payment Server.

•	 TransactionID is a unique number generated by the
MIGS Payment Server that matches the shopping
transaction number. The shopping transaction number is
only relevant to a shopping transaction, for example
Auth transactions. It is the key reference value for
transactions when using AMA transactional functions
like captures and refunds.

•	 The AuthorizeID field in the Digital Receipt is another
identifier that is passed in the Digital Receipt and sent by
the issuing bank for the authorisation. This field cannot
be searched for in Merchant Administration or AMA but
it is displayed in Merchant Administration as the
“Authorisation Code”. It is one of the fields returned in an
AMA query and the AMA transaction result (captures,
refunds).

Cardholder Authentication

MasterCard Identity Check/SecureCode
and Visa Secure

Introduction
MasterCard and Visa have introduced new authentication
methods for internet payments, which involves validating
the presence of the cardholder in a traditional internet
card-not-present environment.

Essentially, this involves the cardholder entering a
password known only to themselves and their issuing bank
during the course of the payment, similar to the use of a
PIN during an ATM transaction. This reduces th e likelihood
of fraud and customer chargeback.

MIGS supports the MasterCard initiative, MasterCard
Identity Check/SecureCode© and the Visa initiative, Visa
Secure (formally known as Verified by Visa©), which
authenticates the cardholder by redirecting their internet
browser to their card issuers authentication server, which is
accessible via the internet. Both MasterCard Identity Check
/SecureCode and Visa Secure implement an authentication
process called Authentication, and MIGS supports the
consolidation of both card scheme implementations of
Authentication.

This consolidation makes the whole authentication process
easier for the merchant. MIGS allows authentication to be
performed without any changes to the merchant ‘request
for payment’ process.

Authentication is performed as an integral part of an
Authorization or Purchase transaction.

From a cardholders experience, there is a new step which
may be added. The cardholder may be redirected to the
issuers 3DSecure Access Control Server (ACS) where a
one-time passcode (OTP) is inputted by the cardholder to
authenticate and complete the transaction. This is sent
through the registered phone number with the issuing
bank. If the OTP matches the OTP in their Issuers
authentication program, then the transaction is considered
authenticated and payment can proceed.

If the cardholder does not enter the correct password, and
therefore cannot authenticate themselves, MIGS will not
proceed with the payment.

Other failures (for example, communication errors) may
result in the authentication attempt failing, but the
payment going ahead. The general rule is that if
authentication is possible it will be performed, but if it is
performed it must succeed otherwise the payment will not
be processed.

26 – 27

Authentication Process Flow
The MIGS interaction with any other entity apart from the
cardholder or merchant is described for information only,
as the merchant will only witness passing of control to
MIGS and the return of authentication data if
authentication was attempted.

It is important to note that the merchant has no control
over an authentication attempt if it is configured for
Authentication.

MIGS will detect the submission of a MasterCard or Visa
Card by the cardholder and, if the merchant has been
enabled for Authentication, MIGS will interrogate the
MasterCard or Visa Directory Service to check if the
cardholder is enrolled in his issuer Authentication program.

If the cardholder is not enrolled, or the issuer does not
support Authentication, authorisation is performed as
normal.

If the cardholder is enrolled, the MasterCard or Visa
directory service will return the URL of the issuer’s ACS, and
MIGS will redirect the cardholder’s browser to this ACS to
allow the issuer to authenticate. The ACS then returns the
cardholder’s browser to MIGS, along with the result of the
authentication attempt.

MIGS will continue with the authorization of the
transaction if the authentication was successful. If it is
not possible to complete authentication flow, then the
authorisation flow may still be completed.

Server-Hosted Payment and Authentication Process Flow

Merchant Web Site IssuerMIGS
Server-Hosted Payment and Authentication

1. Checkout and Redirection

7. Merchant Receipt

2. Payment Options

6. Result and Redirection

3. Payment Details

5. Result Pending

4. Authentication

For a Server-Hosted transaction the merchant has no extra considerations on the submission of the payment request, but
may elect to accept and record the new Authentication result fields, described later in this section.

Payment Transactions for
Server-Hosted Payments
Server-Hosted Payments requires you to use
https://migs.mastercard.com.au/vpcpay URL for the Virtual
Payment Client. You must use HTTPS protocol or the VPC
will reject the transaction request.

Transaction Request Fields
Transaction requests contain the information collected for
a cardholder’s order that is used for processing by the MIGS
Payment Server. The transaction request must include all

the required fields for Server-Hosted Payments. You can
also include optional fields such as Verified-by-Visa and
MasterCard Secure Code.

Required Transaction Request fields for a Server-Hosted
Payment Request
The required fields that must be included in a transaction
request when using Server-Hosted Payments are:

Field Name Required/Optional Field Type Length Example Value

vpc_Version
The version of the Virtual Payment Client API being used. The current version is 1.

Required Numeric 1,8 1

vpc_Command
Indicates the transaction type. This must be equal to pay.

Required Alphanumeric 1,16 pay

vpc_MerchTxnRef

A unique value created by the merchant to identify the transaction request. It is used to track the
progress of a transaction and allows it to be identified on the Payment Server should a
communications failure occur and the transaction response is not received.

It can contain similar information to the vpc_OrderInfo field, but it must be unique.

It may be in part an order number or invoice number, but it should also reflect the transaction
attempt. For example, if a cardholder has insufficient funds on their card and you allow them to
repeat the transaction with another credit card. The value may be test1234/1 on the first attempt,
test1234/2 on the second attempt and test1234/3 on the third attempt.

It can use text made up of any of the base US ASCII characters in the range, hexadecimal 20 to 126.

Required Alphanumeric - Special characters 1,40 test1234/1

vpc_AccessCode

The access code authenticates you on the Payment Server so that a merchant cannot access another
merchant’s Merchant ID. The access code is provided to you when you registered your merchant
profile with your Payment Provider.

Required Alphanumeric 8 6ab89f3

vpc_Merchant
The unique merchant ID assigned to you by your Payment Provider.

Required Alphanumeric 1,16 TESTMERCHANT01

vpc_OrderInfo

Your own identifier used to identify the transaction with the cardholder. For example, a shopping
cart number, an order number, or an invoice number.

Required Alphanumeric - Special characters 1,34 test1234

vpc_Amount

The amount of the transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Required Numeric 1,10 4995

vpc_Locale

Used in SSL type transactions for specifying the language that is used on the Payment Server pages
that are displayed to the cardholder. If the locale is not supplied the Payment Server defined default
of ‘en’ is used.

Required Alphanumeric 2,5 en

vpc_ReturnURL

The URL that is displayed to the cardholder’s browser when the Payment Server sends the
transaction response. It must be a complete URL. The Return URL must start with https:// and may
be up to 255 characters.

If the return URL is not supplied, your default vpc_ReturnURL that you nominated when you
registered your merchant profile with your Payment Provider is used.

Required Alphanumeric -Special characters 1,255 https://returnurl/Receipt.asp

Required Transaction Response Fields for Server Managed Payments

28 – 29

Transaction Request fields for a Server-Hosted Payment Request

The required and optional fields that can be included in a transaction request when using Server-Hosted Payments are:

Field Name Required/Optional/
Conditional

Field Type Length Example Value

Secure Hash – Optional Transaction Request Fields

vpc_SecureHash

Used to allow the Virtual Payment Client to check the integrity of the transaction request.

Required Alphanumeric 64 9FF46885DCA8563ACFC620
58E0FC447BD2C033D505BD
8202F681DCAD7CED4DD2

Secure Hash Type – Optional Transaction Request Fields

vpc_SecureHashType
Used to allow the Virtual Payment Client to check the integrity of the transaction request

Required Alphanumeric 6 SHA256

Visa Secure and MasterCard Identity Check/SecureCode - Optional Transaction Request Fields

vpc_3ds2DataVersion
This field must be set to 55. If not specified, the Payment Server defaults the value to 55.

Optional Numeric 0,2 55

vpc_3ds2Authenticate
Payer

Additional data required by the authentication schemes to support 3DS2 cardholder
authentication.

3DS2 requires a rich data set to allow the merchant to provide the best authentication
experience (frictionless flow) to their cardholder. To provide this data, the merchant must
populate this field with any of the data elements specified in the Web Services API
AUTHENTICATE_PAYER operation (v55) here: https://ap-gateway.mastercard.com/api/
documentation/apiDocumentation/rest-json/version/55/operation/Authentication%3a%20%20
Authenticate%20Payer.html?locale=en_US

For example, to add the customer’s phone number and mobile to the 3DS2 data, the merchant
must provide the following value:

{“customer”:{“phone”:”+61733691372”, “mobilePhone”:”+6143808251672”}}

Note: It is recommended that the merchant supplies as much of this data as possible, as this
increases the likelihood that the ACS will offer frictionless authentication, greatly improving the
cardholder experience and resulting in a more streamlined checkout.

The merchant must use this field to provide data elements for which an equivalent VPC request
field (with the vpc_prefix) does not exist. Where a VPC request field exists, the merchant must
provide the data in this existing VPC request field. For example, the merchant must provide the
card expiry month and year in the field vpc_CardExp rather than via the Web Services API field
sourceOfFunds.provided.card.expiry provided in the field vpc_3dsAuthenticatePayer.

If the merchant provides both the VPC request field and the corresponding Web Services API
field in the field vpc_3dsAuthenticatePayer then the Payment Server ignores the Web Services
API field and sources data from the VPC request field.

If the merchant provides any invalid data elements in the field vpc_3dsAuthenticatePayer, the
Payment Server will return an error message.

Note: The merchant must ensure that the total URL redirect length is supported by web
browsers. This ranges from 2000 to 4000 characters depending on the browsers they want to
support on their web site.

Optional JSON 2000 to
4000
characters

{“customer”:{“phone”:
”+61733691372”, “mobilePhone”:
“+6143808251672”}}

vpc_Return3ds2Details

An indicator of whether the Payment Server should return 3DS2 details (in the VPC response
fields vpc_3DS2dsTransactionId and vpc_AuthenticationVersion) in the Transaction Response.
Valid values are:

•	 Y – Yes

•	 N – No (this is the default value that will be applied, if the field is not provided)

Conditional Alpha 1 Y

https://ap-gateway.mastercard.com/api/documentation/apiDocumentation/rest-json/version/55/operation/Authentication%3a%20%20Authenticate%20Payer.html?locale=en_US
https://ap-gateway.mastercard.com/api/documentation/apiDocumentation/rest-json/version/55/operation/Authentication%3a%20%20Authenticate%20Payer.html?locale=en_US
https://ap-gateway.mastercard.com/api/documentation/apiDocumentation/rest-json/version/55/operation/Authentication%3a%20%20Authenticate%20Payer.html?locale=en_US

Optional Merchant Defined Fields
Server-Hosted Payments also supports up to 5 merchant
defined fields that will be returned to you in the transaction
response. These fields must be less than 255 bytes and must
not start with vpc. These fields are not stored in the Payment
Server.

Card Security Code (CSC) - Optional Transaction Request Fields

The Card Security Code (CSC) is a security feature used for card not present transactions that compares the Card Security
Code on the card with the records held in the card issuer’s database.

If the Payment Provider allows you to set your own CSC level, you may override the Payment Server default level on a per
transaction basis. You can then specify the minimum level that you wish to accept for the current transaction using the
vpc_CSCLevel field.

vpc_CSCLevel

You may set this value to the minimum CSC level that they are willing to accept for this
transaction. If no value is provided, your default value set in the Payment Server will be used. If
this value is present then vpc_CardNum and vpc_CardExp must also be present as well for the
transaction to complete.

Optional Alpha 1 M

Optional Alphanumeric -
Special characters

1,5 Qld

Optional Numeric 1 M

Ticket Number - Optional Transaction Request Fields

vpc_TicketNo

Allows you to include a ticket number, such as an airline ticket number in the transaction
request. The ticket number is stored on the Payment Server database for the transaction.
The ticket number is not returned in the transaction response.

Optional Alphanumeric -
Special characters

1,16 AB1234

Optional Transaction Request fields for Server-Hosted Payments

30 – 31

Transaction Response Fields

Required Transaction Response fields for Server-Hosted Payment Response
The transaction response contains the results of the transaction request fields that were processed by the MIGS Payment
Server. It indicates whether the payment was successful or not. The required fields that are included in the transaction
response fields for Server-Hosted Payments are:

Field Name Required Optional
Input Output
Conditional

Field Type Length Example Value

Server-Hosted Payments – Output fields

vpc_3DS3CI

The 3-D Secure Electronic Commerce Indicator (ECI) returned by the Access Control Server
(ACS). It indicates the level of security and authentication of the transaction.

Possible values depend on the card scheme. For example, if the cardholder was successfully
authenticated by the issuer, the value is:

•	 02 for Mastercard SecureCode.

•	 05 for Visa Secure (formally known as Verified by Visa) and American Express SafeKey.

If the cardholder failed authentication, the value is:

•	 00 for MasterCard SecureCode.

•	 07 for Visa Secure (formally known as Verified by Visa) and American Express SafeKey.

Output Numeric 2 05

vpc_3DSXID

A unique transaction identifier that is generated by the Payment Server (on behalf of the
merchant) to identify the 3DS transaction. This is a 20-byte field that is Base64 encoded to
produce a 28-character value.

Output Alphanumeric 0,28 uyPfGIgsoFQhklkIsto+
IFWs92s=

vpc_3DSenrolled

This field indicates if the card is within an enrolled range based on the information provided by
the scheme’s Directory Server (DS). This is the value of the VERes.enrolled field returned by the
DS. It will take values (Y - Yes, N - No, U - Unavailable for Checking).

Output Alpha 1 N

vpc_3DSstatus

This field is only included if payment authentication was attempted by the Payment Server, i.e.,
an authentication request was submitted to the issuer’s ACS and a PARes was received by the
Payment Server. It will take values (Y - Yes, N - No, A - Attempted Authentication, U -
Unavailable for Checking).

Output Alpha 0,1 N

vpc_VerToken

This value is generated by the issuer as a token for the merchant to prove that the cardholder
authentication was performed. This is a base64 encoded value.

Output Alphanumeric 28 gIGCg4SFhoeIiYqLjI2Oj5
CRkpM=

vpc_VerType
This field will always be set to ‘3DS’ indicating that one of the 3DS schemes was used.

Output Alphanumeric 0,3 3DS

vpc_VerSecurityLevel

The Electronic Commerce Indicator (ECI) value as submitted by the Payment Server to the
acquirer. Indicates the level of security and authentication of the transaction. Depending on
the acquirer and the result of the authentication, this value may be different from the ECI value
returned from the Access Control Server (ACS).

Output Numeric 0,2 06

vpc_VerStatus
The status codes used by the Payment Server to indicate the result of the payment authentication.

Output Numeric 1 N

Field Name Required Optional
Input Output
Conditional

Field Type Length Example Value

Server-Hosted Payments – Conditional Response fields

vpc_3DS2dsTransactionId

A unique identifier for the authentication assigned by the scheme’s Directory Server (DS).
Note: This field is only returned if vpc_Return3ds2Details=Y was provided in the request and
3DS2 was performed.

Conditional Alphanumeric 1,50 211566f4-05af-48d3-
967a-d68be1956d6b

Server-Hosted Payments – Transaction Response fields

vpc_Version

The value of the vpc_Version transaction request input field that is returned in the transaction
response.

Input Numeric 1,2 1

vpc_Command

The value of the vpc_Command transaction request input field that is returned in the
transaction response.

Input Alpha 3 pay

vpc_MerchTxnRef

The value of the vpc_MerchTxnRef transaction request input field that is returned in the
transaction response.

Input Alphanumeric – Special
characters

1,40 test1234/1

vpc_Merchant

The value of the vpc_Merchant transaction request input field that is returned in the
transaction response.

Input Alphanumeric – Special
characters

1,16 TESTMERCHANT01

vpc_OrderInfo

The value of the vpc_OrderInfo transaction request input field that is returned in the
transaction response.

Input Alphanumeric – Special
characters

1,34 test1234

vpc_Amount

The value of the vpc_Amount transaction request input field that is returned in the
transaction response.

Input Numeric 1,10 4995

vpc_Locale

The value of the vpc_Locale transaction request input field that is returned in the transaction
response.

It specifies the language that is used on the Payment Server pages that are displayed to the
cardholder.

If the Locale is not supplied in the transaction request, the default value of ‘en’ (English) used in
the Payment Server.

Input Alphanumeric 2,5 en

vpc_
AuthenticationVersion

The 3DS version used for cardholder authentication.

Note: This field is only returned if vpc_Return3ds2Details=Y was provided in the request and
3DS2 was performed.

Input Numeric 1 2

32 – 33

Field Name Required Optional
Input Output
Conditional

Field Type Length Example Value

Server-Hosted Payments – Transaction Response fields

vpc_TxnResponseCode

A response code that is generated by the Payment Server to indicate the status of the
transaction. A vpc_TxnResponseCode of “0” (zero) indicates that the transaction was
processed successfully and approved by the Acquiring Bank. Any other value indicates the
transaction was declined.

Required Alphanumeric 1 0

vpc_TransactionNo

A unique number generated by the Payment Server for the transaction. It is stored in the
Payment Server as a reference and used to perform actions such as a refund or capture.

Required Numeric 1,12 3465

vpc_Message

Indicates any errors the transaction may have encountered.

Optional Alphanumeric 10,200 Merchant [TESTCORE23]
does not exist

vpc_AcqResponseCode

Acquirer’s Response Code is generated by the Acquiring Bank to indicate the status of
the transaction. The results can vary between institutions so it is advisable to use the
vpc_TxnResponseCode as it is consistent across all acquirers. It is only included for fault
finding purposes.

Optional Alphanumeric 2,3 00

vpc_ReceiptNo

This is also known as the Reference Retrieval Number (RRN), which is a unique identifier.
This value is passed back to the cardholder for their records if the merchant application
does not generate its own receipt number.

Optional Alphanumeric 1,12 RP12345

vpc_BatchNo

A date supplied by the acquirer to indicate when this transaction will be settled. If the batch
has today’s date then it will be settled the next day. When the acquirer closes the batch at the
end of the day, the date will roll over to the next processing day’s date.

Optional Alphanumeric 1,8 20021021

vpc_AuthorizeId

An identifying code issued by the bank to approve or deny the transaction. This is an optional
field and may not be supplied by all acquirers.

Optional Alphanumeric 1,12 ABC12345

vpc_Card

A code issued by the Payment Server for the card type used by the cardholder in
the transaction.

Optional Alphanumeric 0,2 MC

Required Transaction Response Fields for Server-Hosted Payments

Optional Transaction Response fields for Server-Hosted Payment Response
If you integrate advanced functionality when using Server-Hosted Payments, then optional fields that can be included in a
transaction response from the Payment Server are:

Field Name Required Optional
Input

Field Type Length Example Value

Secure Hash – Transaction Response field

vpc_SecureHash

This field is only returned for a Server-Hosted Payment as the response is returned via the
cardholder’s browser as a QueryString, which is visible to the cardholder. It allows you to check
message integrity to ensure the response values have not been tampered with.

Optional Alphanumeric 64 9FF46885DCA8563ACFC620
58E0FC447BD2C033D505BD
8202F681DCAD7CED4DD2

Secure Hash Type – Optional Transaction Request Fields

vpc_SecureHashType

This field is only returned for a Server-Hosted Payment as the response is returned via the
cardholder’s browser as a QueryString, which is visible to the cardholder. It allows you to check
message integrity to ensure the response values have not been tampered with.

Optional Alphanumeric 6 SHA256

Visa Secure and MasterCard Identity Check/SecureCode – Transaction Response fields

These fields are only returned in the transaction response if the transaction is a Verified-by-Visa and MasterCard
SecureCode payment authentication. You must be enabled on the Payment Server by your bank to perform Verified-by-
Visa and MasterCard SecureCode payment authentications.

The vpc_TxnResponseCode is used to determine if the authentication passed or a failed.

	� If the vpc_TxnResponseCode is not equal to ‘F’, the payment authentication passed OK and the Authentication process
has completed satisfactorily.

	 If the vpc_TxnResponseCode is equal to ‘F’, the Authentication process failed and no payment took place.

If a payment authentication has been successful, extra fields are returned in the transaction response for a Verified-by-Visa
and MasterCard Secure Code payment authentication. The fields are not used by you but are returned to allow you to
store them as a record of authentication for the transaction, which can be used to resolve disputes. They cannot be used
again for any future transactions.

All payment authentication transactions use a vpc_VerStatus response code value to show whether the card
authentication was successful or not.

vpc_VerType
‘3DS’

Optional Alphanumeric 3,20 3DS

vpc_VerStatus
The status codes used by the Payment Server.

Optional Alphanumeric 1 N

vpc_VerSecurityLevel

The Verification Security Level is generated at the card issuer as a token to prove that the
cardholder was enrolled and authenticated OK. It is shown for all transactions except those
with authentication status “Failure”. This field contains the security level to be used in the
AUTH message.

	� MasterCard ‘0’ -Merchant not participating (a merchant will not see this if they are configured
for MasterCard SecureCode).

	� MasterCard ‘1’-Cardholder not participating.

	� MasterCard ‘2’-Cardholder authenticated.

	� Visa ‘05’ -Fully Authenticated.

	� Visa ‘06’ -Not authenticated, (cardholder not participating), liability shift.

	� Visa ‘07’ - Not authenticated. Usually due to a system problem, for example the merchant
password is invalid.

Optional Numeric 1,2 06

vpc_VerToken

This value is generated by the card issuer as a token to prove that the cardholder authenticated
OK. This is a base64 encoded value.

Optional Alphanumeric 28 gIGCg4SFhoeIiYqLjI2Oj5CR kpM=

34 – 35

Field Name Required Optional
Input

Field Type Length Example Value

Visa Secure and MasterCard Identity Check/SecureCode – Transaction Response fields

vpc_3DSXID

It is a unique transaction identifier that is generated by the merchant to identify the 3DS
transaction. It is a 20-byte field that is Base64 encoded to produce a 28-character value.

Optional Alphanumeric 28 uyPfGIgsoFQhklkIsto+IFWs9 2s=

vpc_3DSECI

The 3-D Secure Electronic Commerce Indicator, which is set to ‘05’ when the cardholder
authenticates OK, and ‘08’ when the cardholder is not enrolled. (These values may change
depending on the locale or issuer).

Optional Numeric 2 08

vpc_3DSenrolled

This field is only included if the card is within an enrolled range. This is the value of the VERes.
enrolled field. It will take values (Y - Yes, N - No, U – Unavailable for Checking).

Optional Alpha 1 N

vpc_3DSstatus

This field is only included if payment authentication was used and a PARes was received by
the MPI. It will take values (Y – Yes, N – No, A – Attempted Authentication, U – Unavailable
for Checking).

Optional Alpha 1 N

vpc_Return3ds2Details

An indicator of whether the Payment Server should return 3DS2 details (in the VPC response
fields vpc_3DS2dsTransactionId and vpc_AuthenticationVersion) in the Transaction Response.
Valid values are:
•	 Y – Yes
•	 N – No (this is the default value that will be applied, if the field is not provided)

Conditional Alpha 1 Y

Card Security Code (CSC) - Transaction Response fields

vpc_CSCResultCode

The Card Security Code result code indicates the CSC level used to match the data held by the
cardholder Issuing Bank.

Optional Alphanumeric 1 M

vpc_CSCRequestCode

The CSC level that was requested in the Payment Server for the transaction. If the CSC Level
value was not sent, then this will be your default CSC level set in the Payment Server.

Optional Alphanumeric 1 S

Optional Alpha 1 G

Optional Transaction Response Fields for Server-Hosted Payments

Receiving the Transaction Response
To receive the transaction response, you must specify a
return Internet address (return /URL). This address is also
where the cardholder is returned to when they have
completed the purchase. The vpc_ReturnURL field must
contain a valid URL (starting with “https://”) for every
transaction request. If the ReturnURL value does not form a
valid URL, an error is generated in the Payment Server
which will stop the transaction.

Calculating and Validating the Secure Hash Secret
Secure Hash Secret is used to detect whether the
transaction request and response has been tampered with.
It is added to the transaction request details before an
SHA256 algorithm is applied to generate a secure hash. The
secure hash is then sent to the Payment Server with the
transaction request details. Because the Payment Server is
the only other entity apart from you that knows your
secure hash secret it recreates the same secure hash and
matches it with the one that you sent. If they match the
Payment server continues processing the transaction. If it
doesn’t match, it assumes that the transaction request has
been tampered with and will stop processing the
transaction and send back an error message.

How the Secure Hash is Created and Verified
The vpc_SecureHash field is used for the SHA256 HMAC
(FIPS 180-2) secure hash of your secure hash secret and the
transaction request. The secure hash value is the Hex
encoded SHA256 HMAC output of the transaction request
or response fields with the Secure Hash Secret used as a
key. The order that the fields are hashed in are:

•	 All transaction request fields, except the Secure Hash
Type are concatenated to the Secure Hash Secret in
alphabetical order of the field name. The sort should be
in ascending order of the ASCII value of each field string.
If one string is an exact substring of another, the smaller
string should be before the longer string. For example,
Card should come before CardNum.

•	 Fields must not have any separators between them and
must not include any null terminating characters.

For example, if the Secure Hash Secret is DA7A193F76C2FCB8187300D790C7F23, and the transaction request includes the
following fields:

Field Name Example Value

vpc_Version 1

vpc_Commnad pay

vpc_MerchTxnRef tx1

vpc_Merchant TESTANZ

vpc_AccessCode D16B1C2C

vpc_Amount 1000

Example of a Secure Hash Calculation

In ascending alphabetical order the transaction request fields inputted to the SHA256 hash would be:

Adding Secure Hash to a Transaction Request
Although the risk of a cardholder tampering with the
transaction request is minimal, it is recommended that you
include a Secure Hash in your transaction request. If a
cardholder changes a transaction request, it will be
detected because if the Secure Hash generated by the
Payment Server does not match the one generated by you,
the payment is rejected.

If the secure hash does not match, the Virtual Payment
Client will immediately return the cardholder to the

merchant’s site with an error, by setting the
vpc_TxnResponseCode field to 7 to indicate that the
secure hash is incorrect.

• 	 During integration, this may mean that you have not
calculated your hash properly.

•	 During production, this would usually mean that a
cardholder is attempting to commit fraud.

To create a Secure Hash, the following fields are required for a transaction request using Server-Hosted Payments.

<input type=”hidden” name=”vpc_Version” value=”1”>

<input type=”hidden” name=”vpc_AccessCode” value=”6ab89f3”>

<input type=”hidden” name=”vpc_MerchantId” value=”TESTWEBANZ01”>

<input type=”hidden” name=”vpc_OrderInfo” value=”test1234”>

<input type=”hidden” name=”vpc_Amount” value=”4995”>

<input type=”hidden” name=”vpc_Locale” value=”en”>

<input type=”hidden” name=”vpc_ReturnURL” value=”https://192.168.21.205/Receipt.asp”>

<input type=”hidden” name=”vpc_SecureHashType” value=”SHA256”>

<input type=”hidden” name=”Secure_Secret” value=”ebe65403de22d35c7685cb8403315c00”>

The concatenated value is as follows:

vpc_AccessCode=D16B1C2C&vpc_Amount=1000&vpc_
Command=pay&vpc_MerchTxnRef=txn1&vpc_
Merchant=TESTANZ&vpc_OrderInfo=order1&vpc_
Version=1

Note: The last character of each field value (other than the
last) is followed directly by “&”. The concatenated value
must be represented in the UTF-8 character encoding
format.

Note: The values in all name value pairs should not be URL
encoded for the purpose of hashing.

The Secure Hash value is:

753A21929C9C53D6777C00DC55A5F5A9D1105A4D309E
5C5AEEF51FA6DEE4F0CC

and the resultant Request is (note the Secure Hash and
Secure Hash Type fields):

vpc_AccessCode=D16B1C2C&vpc_Amount=1000&vpc_
Command=pay&vpc_MerchTxnRef=txn1&vpc_
Merchant=TESTANZ&vpc_OrderInfo=order1&vpc_
Version=1&vpc_SecureHash=753A21929C9C53D6777C0
0DC55A5F5A9D1105A4D309E5C5AEEF51FA6DEE4F0CC&
vpc_SecureHashType=SHA256

Note: Non-VPC fields (fields that do not begin with “vpc_”)
are returned ONLY for 3-Party integrations. In the
Transaction Response, - the values for these fields cannot
exceed 255 characters - the maximum number of fields
returned is 5 - the maximum length of the response string
in the URL is 2048 characters.

36 – 37

Adding Secure Hash to a Transaction Response
When you receive the transaction response from the
Payment Server, you should calculate the Secure Hash and
compare it to the Secure Hash from the Payment Server to
ensure that the data has not been tampered with in the
transaction response. If you do not check the Secure Hash,

the transaction response can be retrieved securely from
the Payment Server using QueryDR. To create a Secure
Hash, the following fields are required for a transaction
response using Server-Hosted Payments.

The fields in the transaction response must be
concatenated in ascending alphabetical order with the
Secure Secret used as the key:

sha256_input = amount + authorizeID + batchNo +
locale + merchantId + orderInfo + vpc_TxnResponseCode
+ receiptNo + transactionNo + version

The order used is the Virtual Payment Client field names,
not the alphabetical order of the names you may use in
your online store.

You should also ensure that:

•	 UTF-8 encoding should be used to convert the input
from a printable string to a byte array. Note that 7-bit
ASCII encoding is unchanged for UTF-8.

•	 The hash output must be hex-encoded.

String version = req.getParameter(“vpc_Version “);

String merchantId = req.getParameter(“vpc_MerchantId”));

String orderInfo = req.getParameter(“vpc_OrderInfo”);

String amount = req.getParameter(“vpc_Amount”);

String locale = req.getParameter(“vpc_Locale”);

String txnResponseCode = req.getParameter(“vpc_TxnResponseCode”);

String acqResponseCode = req.getParameter(“vpc_AcqResponseCode”);

String receiptNo = req.getParameter(“vpc_ReceiptNo”);

String xtnNo = req.getParameter(“vpc_TransactionNo”);

String batchNo = req.getParameter(“vpc_BatchNo”);

String authorizeID = req.getParameter(“vpc_AuthorizeId”);

String secureHashType=req.getParameter(“vpc_SecureHashType”);

String resp_Secure_Hash = req.getParameter(“vpc_SecureHash”);

The fields in the transaction request, except the Secure
Hash Type must be concatenated in ascending alphabetical
order with the Secure Hash Secret used as the key:

sha256_input = vpc_AccessCode + vpc_Amount +
vpc_Locale + vpc_MerchantId + vpc_OrderInfo +
vpc_ReturnURL + vpc_Transaction + vpc_Version

The order used is the Virtual Payment Client field names,

not the alphabetical order of the names you may use in
your online store.

Any extra functionality fields must be also concatenated to
the sha256_input in ascending alphabetical order as shown
above, for example, if Ticket Number functionality is added,
then the extra field to be added is:

And the sha256_input would then become:

sha256_input = vpc_AccessCode + vpc_Amount +
vpc_Locale + vpc_MerchantId + vpc_OrderInfo +
vpc_ReturnURL + vpc_TicketNo + vpc_Transaction +
vpc_Version

You should also ensure that:

�•	 UTF-8 encoding should be used to convert the input
from a printable string to a byte array. Note that 7-bit
ASCII encoding is unchanged for UTF-8.

•	 The hash output must be hex-encoded.

<input type=”hidden” name=”vpc_TicketNo” value=”ABC123”>

Payment Transactions for
Merchant-Hosted Payment
Merchant-Hosted Payments requires you to use https://
migs.mastercard.com.au/vpcdps URL for the Virtual
Payment Client. You must use HTTPS protocol or the Virtual
Payment Client will reject the Transaction Request. In
Merchant-Hosted Payments the online store application
connects directly to the Virtual Payment Client using a
form POST operation that directly returns a response. Since
the Payment Server cannot collect cardholder card details,
they must be collected on your site and sent to the Virtual
Payment Client. During Merchant-Hosted Payments,
session variables do not need to be sent to the Payment
Server because the merchant’s session is not broken as it is
in Server-Hosted Payments, where the cardholder’s
Internet browser is disconnected from the merchant’s site
and redirected to the Payment Server. This means that in

Merchant-Hosted Payments, the cardholder browser is not
redirected, so advanced functionality such as Verified-by-
Visa and MasterCard Secure Code cannot be used.

Transaction Request Fields
The transaction request contains the required information
for a cardholder’s order that is sent via the Virtual Payment
Client to the Payment Server.

Required Transaction Request fields for Merchant-
Hosted Payment Request
The required fields that must be included in a transaction
request when using Merchant-Hosted Payments are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The version of the 0Byte Virtual Payment Client API being used. The current version is 1.

Required Numeric 1,8 1

vpc_Command
Indicates the type of transaction type. It must be equal to ‘pay’

Required Alpha 1,16 pay

vpc_MerchTxnRef

A unique value created by you to identify the transaction request. It is used to track the progress of
a transaction and allows it to be identified on the Payment Server should a communications failure
occur and the transaction response is not received.

It can contain similar information to the vpc_OrderInfo field, but it must be unique.

It may be in part an order number or invoice number, but it should also reflect the transaction
attempt. For example, if a cardholder has insufficient funds on their card and you allow them to
repeat the transaction with another credit card. The value may be test1234/1 on the first attempt,
test1234/2 on the second attempt and test1234/3 on the third attempt. It can use text made up of
any of the base US ASCII characters in the range, hexadecimal 20 to 126.

Required Alphanumeric -Special
characters

1,40 test1234/1

vpc_AccessCode

The access code is used to authenticate you on the Payment Server so that a merchant cannot
access another merchant’s MerchantId. The access code is provided to you when you registered
your merchant profile with the Payment Provider.

Required Alphanumeric 8 6ab89f3

vpc_Merchant
The unique merchant ID assigned to you by your Payment Provider.

Required Alphanumeric 1,16 TESTMERCHANT01

vpc_OrderInfo

An identifier provided by you to identify the transaction with the cardholder. It can be a shopping
cart number, an order number, or an invoice number.

Required Alphanumeric -Special
characters

1,34 test1234

vpc_Amount

The amount of the transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Required Numeric 1,10 4995

vpc_CardNum

This field is used to bypass the card details page on the Payment Server. It is the number of the card
to be used for processing the payment. It can only be a long integer value with no white space or
formatting characters.

Required Numeric 15,40 5123456789012346

38 – 39

Field Name Required Optional
Input

Field Type Length Example Value

vpc_CardExp

The expiry date of the card to be processed for payment. The format for this is YYMM, for example,
for an expiry date of May 2009, the value would be 0905. The value must be expressed as a 4-digit
number (integer) with no white space or formatting characters

Required
Optional only for
recurring transactions

Numeric 4 0504

Required Transaction Request fields for Merchant-Hosted Payments

Optional Transaction Request fields for Merchant-Hosted Payment Request
The optional fields that can be included in a transaction request to the Virtual Payment Client when using Merchant-Hosted
Payments are:

Field Name Required Optional
Input

Field Type Length Example Value

Card Security Code (CSC) – Optional Transaction Request Fields

The Card Security Code (CSC) is a security feature used for card not present transactions that compares the Card Security
Code on the card with the records held in the card issuer’s database.

vpc_
CardSecurityCode

The Card Security Code (CSC) is a security feature used for card not present transactions that
compares the Card Security Code on the card with the records held in the card issuer’s database.
For example, on Visa and MasterCard credit cards, it is the three digit value printed on the signature
panel on the back following the credit card account number. For American Express, the number is
the 4 digit value printed on the front above the credit card account number. Once the transaction is
successfully processed and authorised, the card issuer returns a result code (CSC result code) in its
authorisation response message verifying the CSC level (vpc_CSCLevel) of accuracy used to match
the card security code.

Optional Numeric 1,4 123

vpc_CSCLevel

You may set this value to the minimum CSC level that you are willing to accept for this transaction.
If you do not set a value, your default value will be used.

Optional Alpha 1 M

Optional Alpha 3 AUS

Optional Numeric 1 M

Transaction Source – Optional Transaction Request Fields

vpc_TxSource

Allows the merchant to specify the source of the transaction.

Valid values are:
INTERNET - indicates an Internet transaction.
MOTOCC - indicates a call centre transaction.
MOTO - indicates a mail order or telephone order.
MAILORDER - indicates a mail order transaction.
TELORDER - indicates a telephone order transaction.
CARDPRESENT - indicates that the merchant has sighted the card.
VOICERESPONSE - indicates that the merchant has captured the transaction from an IVR system.

Ticket Number – Optional Transaction Request Fields

vpc_TicketNo

This allows the merchant to include a ticket number, such as an airline ticket number in the transaction
request. The ticket number is stored on the Payment Server database for that transaction.

The ticket number value is not returned in the transaction response.

Optional Alphanumeric -Special
characters

1,16 AB1234

Field Name Required Optional
Input

Field Type Length Example Value

Credential On File Input Fields

The data is sent by simply including the additional data with the required fields for a basic transaction.

vpc_
CardStoredOnFile

This field only applies if you collect and store card details from your cardholder and use the stored
value for subsequent payments. If the card details are not stored or you do not intend to store them,
you need not provide this field.
Valid values for this field are:
•	 STORED: Use this value if the card details provided have been stored previously.
•	� TO_BE_STORED: Use this value if this is the first transaction using the card and you intend to store

the card details only if the transaction is successful.
Notes:
If you use card scheme tokenization services like MDES (Mastercard Digital Enablement Service) and
store the tokens provided, you have to provide the value STORED, and if you pass the token without
storing them, you are not required to provide this field.
It’s highly recommended that you flag merchant-initiated transactions correctly using this field for
better approval rates.

Optional Alphanumeric 6,12 STORED

vpc_AgreementId

This is a unique value generated by the merchant to identify a payment agreement with the
cardholder. When you collect payment credentials from your cardholders and store them for later
use, you must provide an agreement ID when you use the stored credentials for the following
merchant-initiated transactions:
•	� Recurring payments (vpc_TxSourceSubType=RECURRING): You have an agreement with the

cardholder that authorizes you to automatically debit their account at agreed intervals for fixed
or variable amounts. For example, gym membership, phone bills, or magazine subscriptions.

•	� Installment payments (vpc_TxSourceSubType=INSTALLMENT): You have an agreement with the
cardholder that authorizes you to process multiple payments over an agreed period of time for a
single purchase. For example, the payer purchases an item for $1000 and pays for it in four
monthly installments.

•	� Unscheduled payments (vpc_TxSourceSubType=SINGLE): You have an agreement with the
cardholder that authorizes you to process future payments when required. For example, the
cardholder authorizes you to process an account top-up transaction for a transit card when the
account balance drops below a certain threshold.

Optional Alphanumeric 1,100 ABC_COF_AG_ID_001

vpc_TxSource

The source of the transaction. You must set this to “MERCHANT” for a merchant-initiated transaction.
For example, a recurring payment, installment payment, or account top-up.
This is required to be set only if the merchant’s default transaction source has not been configured
to MERCHANT.

Optional Alphanumeric 11 MERCHANT

vpc_
TxAcquirerTraceId

The unique identifier that you can provide in a Purchase transaction, which allows the issuer to link
related transactions, for example, merchant-initiated transactions. It is only applicable if you want to
link transactions across multiple payment gateways.
To find its usage, look up ‘trace identifier’ or ‘transaction identifier’ in the Mastercard and Visa
documentation respectively.
If you provide the Trace ID in the request, the Payment Server will use this value in preference to the
value stored against the Agreement ID.

Condition al Alphanumeric 1,15 123458908123342

Optional Transaction Request fields for Merchant-Hosted Payments

40 – 41

Sending a Transaction Request for Merchant-Hosted
Payments

Post Method
The Post Method is used when you collect the cardholder’s
card details. The data is collected in a secure form and
included in the transaction request that is sent directly to
the Payment Server.

Sending a Transaction Request using the Post Method
The following post method example shows the minimum
number of fields required to complete a transaction using
the Merchant-Hosted Payment integration model:

Transaction Response Fields

Required Transaction Response fields for Merchant-
Hosted Payment Response
The transaction response contains the results of the
transaction request that was processed by the
Payment Server.

The fields that are included in a transaction response from
the Virtual Payment Client when using Merchant-Hosted
Payments are:

<form method=”POST” action=”https://www.<vpc_name>/vpcdps”>

<input type=”hidden” name=”vpc_Version” value=”1”>

<input type=”hidden” name=”vpc_Command” value=”pay”>

<input type=”hidden” name=”vpc_AccessCode” value=”6ab89f3”>

<input type=”hidden” name=”vpc_MerchTxnRef” value=”test1234/1”>

<input type=”hidden” name=”vpc_MerchantId” value=”TESTWEBANZ01”>

<input type=”hidden” name=”vpc_OrderInfo” value=”test1234”>

<input type=”hidden” name=”vpc_Amount” value=”4995”>

<input type=”hidden” name=”vpc_CardNum” value=”5123456789012346”>

<input type=”hidden” name=”vpc_cardExp” value=”0405”>

<!-- submit -->

<input type=”submit” value=”Pay Now”>

</form>

Field Name Required Optional
Input

Field Type Length Example Value

Merchant-Hosted Payments - Transaction Response fields

vpc_Version
The value of the vpc_Version input field returned in the transaction response.

Input Numeric 1,2 1

vpc_Command
The value of the vpc_Command field returned in the transaction response.

Input Alpha 1,16 pay

vpc_MerchTxnRef

The value of the vpc_MerchTxnRef field returned in the transaction response.

Input Alphanumeric -
Special characters

1,40 test1234/1

vpc_Merchant

The value of the vpc_Merchant input field returned in the transaction response.

Input Alphanumeric -
Special characters

1,16 TESTMERCHANT01

vpc_OrderInfo

The value of the vpc_OrderInfo input field returned in the transaction response.

Input Alphanumeric -Special
characters

1,34 test1234

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Amount
The value of the vpc_Amount input field returned in the transaction response.

Input Numeric 1,10 4995

vpc_Locale

Locale is not supplied in the transaction request but is returned in the transaction response.
It is not used in Merchant-Hosted Payments.

Input Alphanumeric 2,5 en

vpc_
TxnResponseCode

A response code that is generated by the Payment Server to indicate the status of the transaction.

A vpc_TxnResponseCode of “0” (zero) indicates that the transaction was processed successfully and
approved by the acquiring bank. Any other value indicates the transaction was declined.

Required Alphanumeric 1 0

vpc_
TransactionNo

A unique number generated by the Payment Server. It is the reference value of the transaction in
the Payment Server. This is the Shopping Transaction number that must be used for a Refund or
Capture operation.

Required Numeric 1,12 3465

vpc_Message

This is a message to indicate what sort of errors the transaction encountered.

Optional Alphanumeric 10,200 Merchant [TESTCORE23] does
not exist.

vpc_
AcqResponseCode

Acquirer’s Response Code is generated by the Acquiring Bank to indicate the status of the transaction.
The results can vary between institutions so it is advisable to use the vpc_TxnResponseCode as it is
consistent across all acquirers. It is only included for fault finding purposes.

Optional Alphanumeric 2,3 00

vpc_ReceiptNo

This is also known as the Reference Retrieval Number (RRN), which is a unique identifier.

This value is passed back to the cardholder for their records if the merchant application does not
generate its own receipt number.

Optional Alphanumeric -Special
characters

1,12 RP12345

vpc_BatchNo

A date supplied by an acquirer to indicate when this transaction will be settled. If the batch has
today’s date then it will be settled the next day. When the acquirer closes the batch at the end of the
day, the date will roll over to the next processing day’s date.

Optional Alphanumeric 1,8 20021021

vpc_AuthorizeId

A code issued by the acquiring bank to approve or deny the transaction. This may not always be
supplied by all acquirers.

Optional Alphanumeric 1,12 ABC12345

vpc_Card
A code issued by the Payment Server for the card type used by the cardholder for the transaction.

Optional Alphanumeric 0,2 MC

Transaction Response Fields for Merchant-Hosted Payments

42 – 43

Optional Transaction Response fields for Merchant-Hosted Payment Response
If you integrate advanced functionality when using Merchant-Hosted Payments, then optional fields that can be included in
a transaction response from the Payment Server are:

Field Name Required Optional
Input

Field Type Length Example Value

Card Security Code (CSC) - Transaction Response fields

vpc_
CSCResultCode

The result code generated by the Payment Sever in relation to the Card Security Code.

Optional Alpha 1 S

vpc_
CSCRequestCode

The CSC level that was requested in the Payment Server for the transaction. If the CSC Level value
was not sent, then this will be the merchant’s default CSC level set in the Payment Server.

Optional Alpha 1 M

vpc_
AcqCSCRespCode

The result code generated by the acquiring bank in relation to the Card Security Code.

Optional Alpha 1 M

Optional Alpha 1 S

Table 1 Optional Transaction Response Fields for Merchant-Hosted Payments

Advanced Functionality Fields

Capture

Transaction Request Fields - Capture
The fields that can be included in a transaction request to the Virtual Payment Client when using capture are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The version of the 0Byte Virtual Payment Client API being used. The current version is 1.

Required Numeric 1,8 1

vpc_Command
Used to indicate the type of payment. The value, capture is used.

Required Alpha 1,16 Capture

vpc_MerchTxnRef

A unique value created by the merchant to identify the transaction request. It is used to track the
progress of a transaction and allows it to be identified on the Payment Server should a
communication’s failure occur and the transaction response is not received.

It can contain similar information to the vpc_OrderInfo field, but it must be unique.

It may be in part an order number or invoice number, but it should also reflect the transaction
attempt. For example, if a cardholder has insufficient funds on their card and you allow them to
repeat the transaction with another credit card. The value may be test1234/1 on the first attempt,
test1234/2 on the second attempt and test1234/3 on the third attempt.

It can use text made up of any of the base US ASCII characters in the range, hexadecimal 20 to 126.

Required Alphanumeric -
Special characters

1,40 test1234/1

vpc_AccessCode

The access code authenticates a merchant on the Payment Server so that a merchant cannot access
another merchant’s MerchantId.
The access code is provided to you when you registered your merchant profile with the Payment
Provider.

Required Alphanumeric 8 6ab89f3

vpc_Merchant
The unique merchant ID assigned to you by your Payment Provider.

Required Alphanumeric 1,16 TESTMERCHANT01

vpc_
TransactionNo

The transaction reference number of the original authorisation or purchase transaction.

Required Numeric 1,12 123

vpc_Amount

The amount of the transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Required Numeric 1,10 4995

vpc_User
This field is a special AMA user created to allow this function to operate.

Required Alphanumeric 1,16 amauser

vpc_Password
The password used to authorise the AMA user to access this function.

Required Alphanumeric 1,16 Password12

Transaction Request Fields for a Capture

44 – 45

Transaction Response Fields - Capture
The fields included in a transaction response from the Virtual Payment Client when using captures are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The value of the vpc_Version input field returned in the transaction response.

Input Numeric 1,8 1

vpc_Command
The value of the vpc_Command field returned in the transaction response.

Input Alpha 1,16 capture

vpc_MerchTxnRef

The value of the vpc_MerchTxnRef field returned in the transaction response.

Input Alphanumeric -Special
characters

1,40 test1234/1

vpc_Merchant

The value of the vpc_Merchant input field returned in the transaction response.

Input Alphanumeric -Special
characters

1,16 TESTMERCHANT01

vpc_Amount
The value of the vpc_Amount input field returned in the transaction response.

Input Numeric 1,10 4995

vpc_
TxnResponseCode

A response code that is generated by the Payment Server to indicate the status of the transaction.

A vpc_TxnResponseCode of “0” (zero) indicates that the transaction was processed successfully
and approved by the acquiring bank. Any other value indicates the transaction was declined.

Required Alphanumeric 1 0

vpc_TransactionNo

A unique number generated by the Payment Server and is the reference value of the transaction in
the Payment Server. This is the value that must be used for a Capture.

Required Numeric 1,12 3465

vpc_Message

A message to indicate an error the transaction encountered.

Optional Alphanumeric 10,200 Merchant [TESTCORE23] does
not exist

vpc_
AcqResponseCode

Acquirer’s Response Code is generated by the bank to indicate the status of the transaction.
The results can vary between institutions so it is advisable to use the vpc_TxnResponseCode as it is
consistent across all acquirers. It is only included for fault finding purposes.

Optional Alphanumeric 2,3 00

vpc_ReceiptNo

This is also known as the Reference Retrieval Number (RRN), which is a unique identifier.

This value is passed back to the cardholder for their records if your online store does not generate
its own receipt number.

Optional Alphanumeric 1,12 RP12345

vpc_BatchNo
A date supplied by an acquirer to indicate when this transaction will be settled. If the batch has
today’s date then it will be settled the next day. When the acquirer closes the batch at the end of
the day, the date will roll over to the next processing day’s date.

Optional Alphanumeric 1,8 20021021

vpc_AuthorizeId A code issued by the acquiring bank to approve or deny the transaction. This may not always be
supplied by all acquirers.

Optional Alphanumeric 1,12 ABC12345

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Card

A code issued by the Payment Server to detail the type of card the cardholder used for
the transaction.

Optional Alphanumeric 0,2 MC

vpc_
ShopTransactionNo

The transaction reference number of the original authorisation or purchase transaction.

Optional Numeric 1,21 3DS

vpc_
AuthorisedAmount

The total amount of the original authorisation transaction.

Optional Numeric 1,10 N

vpc_
CapturedAmount

The amount of the capture transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Optional Numeric 1,10 4995

vpc_TicketNo

Allows you to include a ticket number, such as an airline ticket number in the transaction request.

The ticket number is stored on the Payment Server database for that transaction and returned in
the transaction response for capture transactions.

Optional Alphanumeric -Special
characters

1,16 Any data

Transaction Response Fields for a Capture

46 – 47

Refund

Transaction Request Fields - Refund
The fields that can be included in a transaction request to the Virtual Payment Client when using refund are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The version of the 0Byte Virtual Payment Client API being used. The current version is 1.

Required Numeric 1,8 1

vpc_Command
Used to indicate the type of payment. For refunds, the value ‘refund’ is used.

Required Alpha 1,16 Refund

vpc_MerchTxnRef

A unique value created by the merchant to identify the transaction request. It is used to track the
progress of a transaction and allows it to be identified on the Payment Server should a
communications failure occur and the transaction response is not received.

It can contain similar information to the vpc_OrderInfo field, but it must be unique.

It may be in part an order number or invoice number, but it should also reflect the transaction
attempt. For example, if a cardholder has insufficient funds on their card and you allow them to
repeat the transaction with another credit card. The value may be test1234/1 on the first attempt,
test1234/2 on the second attempt and test1234/3 on the third attempt.

It can use text made up of any of the base US ASCII characters in the range, hexadecimal 20 to 126.

Required Alphanumeric -Special
characters

1,40 test1234/1

vpc_AccessCode

The access code authenticates a merchant on the Payment Server so that a merchant cannot access
another merchant’s MerchantId. The access code is provided to you when you registered your
merchant profile with the Payment Provider.

Required Alphanumeric 8 6ab89f3

vpc_Merchant
The unique merchant ID assigned to you by your Payment Provider.

Required Alphanumeric 1,16 TESTMERCHANT01

vpc_TransNo
The transaction reference number of the original Authorisation or Purchase transaction.

Required Numeric 1,12 123

vpc_Amount

The amount of the refund transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Required Numeric 1,10 4995

vpc_User
This field is a special AMA user created to allow this function to operate.

Required Alphanumeric 1,16 amauser

vpc_Password
The password used to authorise the AMA user access to this function.

Required Alphanumeric 1,16 password12

Transaction Request Fields for a Refund

Transaction Response Fields - Refund
The fields included in a transaction response from the Virtual Payment Client when using refunds are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The value of the vpc_Version input field returned in the transaction response.

Input Numeric 1,8 1

vpc_Command
The value of the vpc_Command field returned in the transaction response.

Input Alpha 1,16 refund

vpc_MerchTxnRef

The value of the vpc_MerchTxnRef field returned in the transaction response.

Input Alphanumeric -Special
characters

1,40 test1234/1

vpc_Merchant

The value of the vpc_Merchant input field returned in the transaction response.

Input Alphanumeric -Special
characters

1,16 TESTMERCHANT01

vpc_Amount
The value of the vpc_Amount input field returned in the transaction response.

Input Numeric 1,10 4995

vpc_
TxnResponseCode

A response code that is generated by the Payment Server to indicate the status of the transaction.

A vpc_TxnResponseCode of “0” (zero) indicates that the transaction was processed successfully
and approved by the acquiring bank. Any other value indicates the transaction was declined.

Required Alphanumeric 1 0

vpc_TransactionNo

A unique number generated by the Payment Server. It is the reference value of the transaction in
the Payment Server. This is the value that must be used for a Refund.

Required Numeric 1,12 3465

vpc_Message

A message to indicate any errors the transaction may have encountered.

Optional Alphanumeric 10,200 Merchant [TESTCORE23] does
not exist

vpc_
AcqResponseCode

Acquirer’s Response Code is generated by the Acquiring Bank to indicate the status of the
transaction. The results can vary between institutions so it is advisable to use the vpc_
TxnResponseCode as it is consistent across all acquirers. It is only included for fault finding purposes.

Optional Alphanumeric 2,3 00

vpc_ReceiptNo

This is also known as the Reference Retrieval Number (RRN), which is a unique identifier. This value
is passed back to the cardholder for their records if the merchant application does not generate its
own receipt number.

Optional Alphanumeric 1,12 RP12345

vpc_BatchNo

A date supplied by an acquirer to indicate when this transaction will be settled. If the batch has
today’s date then it will be settled the next day. When the acquirer closes the batch at the end of
the day, the date will roll over to the next processing day’s date.

Optional Alphanumeric 1,8 20021021

vpc_AuthorizeId

A code issued by the acquiring bank to approve or deny the transaction. This may not always be
supplied by all acquirers.

Optional Alphanumeric 1,12 ABC12345

vpc_Card

A code issued by the Payment Server to detail the type of card the cardholder used for
this transaction.

Optional Alphanumeric 0,2 MC

48 – 49

Field Name Required Optional
Input

Field Type Length Example Value

vpc_
ShopTransactionNo

The transaction reference number of the original authorisation or purchase transaction.

Optional Numeric 1,19 3DS

vpc_
AuthorisedAmount

The total amount of the original authorisation transaction.

Optional Numeric 1,10 N

vpc_
RefundedAmount

The amount of the refund transaction in the smallest currency unit expressed as an integer.
For example, if the transaction amount is $49.95 then the amount in cents is 4995.

Optional Numeric 1,10 4995

vpc_TicketNo

Allows you to include a ticket number, such as an airline ticket number in the transaction request.

The ticket number is stored on the Payment Server database for that transaction. The ticket
number is stored on the Payment Server database for that transaction and returned in the
transaction response for refunds.

Optional Alphanumeric -Special
characters

1,16 Any data

Table 2 Transaction Request Fields for a Refund

QueryDR Transaction

Transaction Request Fields – Query DR
The QueryDR command allows you to search for a
transaction response, which has been lost. The search is
performed on the primary key – MerchTxnRef, which is
why the vpc_MerchTxnRef field needs to be a unique value.

If there are transactions with duplicate vpc_MerchTxnRef
numbers, the query will only return the most recent

transaction encrypted transaction response, but a flag is
raised to indicate there is more than one transaction that
meets the criteria.

If the query result returned is not the correct one, you must
use Merchant Administration on the Payment Server to
search for the correct transaction.

The fields that are included in a transaction request when
using QueryDR are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Version
The version of the 0Byte Virtual Payment Client API being used. The current version is 1.

Required Numeric 1,8 1

vpc_Command
This indicates the type of transaction.

Required Alpha 1,16 QueryDR

vpc_AccessCode

The access code authenticates a merchant on the Payment Server so that a merchant cannot access
another merchant’s MerchantId. The access code is provided to you when you registered your
merchant profile with the Payment Provider.

Required Alphanumeric 8 6ab89f3

vpc_Merchant
The unique merchant ID assigned to you by your Payment Provider.

Required Alphanumeric 1,16 TESTMERCH ANT01

vpc_MerchTxnRef

It is the primary key used to search the progress of a transaction in the event of a communication’s
failure where no transaction response is received.

Required Alphanumeric -Special
characters

1,40 test1234/1

vpc_User
This field is a special AMA user created to use this function.

Required Alphanumeric 1,16 amauser

vpc_Password
The password used to authorise the AMA user access to this function.

Required Alphanumeric 1,16 password12

Transaction Request fields for a QueryDR transaction

Transaction Response Details – Query DR
The fields returned in the transaction response are the same as the original transaction, but includes two additional
transaction response fields. The fields that are included in a transaction response when using QueryDR are:

Field Name Required Optional
Input

Field Type Length Example Value

vpc_DRExists

This key is used to determine if the QueryDR command returned any search results. If the value is
“Y”, then there is at least one vpc_MerchTxnRef number result matching the search criteria.

Optional Alpha 1 Y

vpc_
FoundMultipleDRs

This is used after the previous command to determine if there are multiple results. If the value is “Y”,
then there are multiple MerchTxnRef numbers matching the search criteria.

Optional Alpha 1 N

Transaction Response fields for a QueryDR transaction

50 – 51

Field Name Required Optional
Input

Field Type Length Example Value

vpc_Gateway

This field determines the VPC gateway that will be used. The field is case sensitive, and must comply
with the gateways that are valid in the Payment Server. The value used here will always be ssl.

Optional Alpha 3 ssl

vpc_Card

A code issued by the Payment Server for the card type used by the cardholder in the transaction.

Amex American Express Credit Card

Dinersclub Diners Club Credit Card

JCB JCB Credit Card

Mastercard MasterCard Credit Card

Visa Visa Credit Card

Optional Alphanumeric 3,16 VISA

Transaction request fields to Bypass Card Selection Page on the Payment Server

Transaction Response Fields - Bypass Card Selection Page
The Bypass Card Selection page functionality does not return any extra fields in the transaction response.

Bypass Card Selection Page on the
Payment Server
This is used in Server-Hosted Payments to bypass the
Payment Server payments page that displays the logos of
all the cards the payment processor will accept.

Transaction Request Fields - Bypass Card Selection Page
The fields that are included in a transaction request when
using Bypass Card Selection are:

Troubleshooting and FAQs

Troubleshooting

What happens if a Transaction Response fails to
come back?
To deal with a transaction response that fails to come back:

•	 Flag the transaction as having an error, so that it needs
to be manually checked using Merchant Administration
on the Payment Server. Or,

•	 Use the Advanced Merchant Administration (AMA),
QueryDR command to search the Payment Server
database for the transaction. The vpc_MerchTxnRef is
used as the transaction identifier when searching using
QueryDR command.

Since the transaction response has failed to come back,
there is no transaction number available from the Payment
Server to identify the transaction in question, and this is
why you use the vpc_MerchTxnRef. It is important to
have a unique vpc_MerchTxnRef for every transaction
otherwise the query could return multiple results. Only
the most recent transaction is returned in the QueryDR
command if there are multiple results, but this may not
be the transaction you are concerned with.

If the transaction response code was successful
When you find the required vpc_MerchTxnRef in the
QueryDR, check the vpc_TxnResponseCode field to see if it
is successful (should be equal to ‘0’). If the vpc_
TxnResponseCode is 0, then the transaction is successful
and you just need to extract the relevant data details from
the QueryDR results for your records.

If the transaction response code was not successful
If the vpc_TxnResponseCode is not 0, you need to
determine the next course of action based on what you
would do if the vpc_TxnResponseCode were not 0 in a
normal transaction response coming back from the
Payment Server.

If you did not find the transaction response code
If you query the Payment Server for the vpc_MerchTxnRef
using the QueryDR call and you do not receive any results,
then it is safe to repeat the transaction. It is safe to use the
same vpc_MerchTxnRef, as the existing one does not show
up in the Payment Server’s database and was therefore
never processed.

If you find multiple transaction response code results
If the QueryDR is flagged as having multiple results
(returns ‘Y’ in the MultipleResults field), then the
MerchTxnRef is not unique. This is the primary reason for
implementing a unique vpc_MerchTxnRef for every
transaction. This solution requires more data capture and
processing, but it is only necessary when you don’t have a
unique vpc_MerchTxnRef number. This solution requires
more data capture and processing, but it is only necessary
when you don’t have a unique vpc_MerchTxnRef number.

Figure 6: What happens if a transaction response fails to come back

Diagram Showing Information Flow

Attempt
transaction

Is there a vpc_
TxnResponseCode?

(I.e Approved/
Declined)

API uses
MerchantTxnRef

for AMA QueryDR
command for

transaction

Checkout page
reflects response

received

Check eGate if
transaction request

was received

Transaction
was not
received

End

End

API/
Merchant

makes
decision on
next action

If not
another

transaction
attempt

Update API
to show

transaction
failed/

cancelled

Update
MerchantTxnRef
for unique value

Re-attempt
transaction

If another
transaction

attempt
A

No
response

Response received

No
transaction

found

If
transaction

found

A

52 – 53

What to do if a Session Timeout occurs?
It is possible that while a cardholder is entering their card
details at the Payment Server, the session is broken (say a
communication failure due to a modem connection
dropping off). If this occurs, a cardholder will lose their
session. Even if they come back to your site, they will have a
new session, and their old session will never be completed.
To determine the status of the lost transaction, you will
need to perform a QueryDR transaction based on the
original vpc_MerchTxnRef.

Does the Cardholders Internet browser need to support
cookies?
Yes. The Virtual Payment Client interface requires a
cardholder’s browser to support cookies for Server-Hosted
Payments.

How do I know if a transaction has been approved?
All approved transactions are represented with a response
code of zero “0” from the Payment Server. All other codes
represent declined transactions.

Frequently Asked Questions

Can the Payment Servers payment pages be modified for
a Merchant?
No. The Payment Servers payment pages are branded
using either the Payment Provider or Banks branding to
assure cardholders of the security of the transaction. If you
do not wish to display the Payment Provider’s branded
pages to your cardholders then you need to implement the
Merchant-Hosted Payments Integration Model.

How often can I reconcile?
Reconciliation is performed automatically by the MIGS
Payment Server. It is always done around the same time
each day. Your bank will be able to inform you of the
cut-over time.

Is a Shopping Cart required?
It is not necessary to have a shopping cart. All that is
required is that the transaction information is within the
transaction request passed to the Payment Server.

Does the Payment Server handle large peaks in
transaction volumes?
The Payment Server queues pending transactions so
transactions are not lost.

How long will an authorisation be valid on a cardholder
account?
This depends on the Issuing Bank who issued the card to
the cardholder. Each card Issuer defines the authorisation
expiry period in which they hold the funds on the
cardholder’s account, while they wait for the arrival of the
capture transaction. Generally it is 5-8 processing days,
before the authorisation purges from the cardholder
account and access to the funds are released back to the
cardholder.

What is the RRN and how do I use it?
The RRN (Reference Retrieval Number) is a unique number
generated by the bank for a specific bank merchantId.

It is generated by using the following formula:

The RRN is a reference used to retrieve the original
transaction data and it is useful when your online store
does not provide a receipt number. The RRN can be viewed
in Merchant Administration.

RRN, MerchTxnRef, OrderInfo, AuthorizeId and
TransactionId
RRN (Reference Retrieval Number) is a unique number
for a particular MerchantId. This is the value that is passed
back to the cardholder for their records. You cannot search
for this field in Merchant Administration, but it is displayed
in Merchant Administration on the transaction details
pages as the Reference Retrieval Number (RRN). It is one of
the fields returned in a queryDR and the transaction result
(captures, refunds).

MerchTxnRef is generated by your online store. Ideally it
should be a unique value for each transaction and you
should retain this number so that transactions can be
searched for in your online store and the Payment Server.

OrderInfo is also generated by your online store. It should
also be a unique value for each transaction, which you
should retain so that you can search for the transaction in
your online store and the Payment Server.

AuthorizeId is an identifier from the Acquiring Bank,
which is in the transaction response for the authorisation.
This field cannot be searched for in Merchant
Administration, but it is displayed in Merchant
Administration as the Authorisation Code. It is one of the
fields returned in an AMA query and the AMA transaction
result (captures, refunds).

TransactionID is a unique number generated by the
Payment Server that matches the shopping transaction
number. The shopping transaction number is the key
reference value for transactions when using AMA
transactional functions like captures and refunds.

Appendix 3 – Test Environment
Test Cards
The following table shows the test card numbers and associated expiry dates configured for each card scheme on the MIGS
Payment Server.

Card Type PAN Expiry Date

MasterCard 5123456789012346 05/21

MasterCard 5313581000123430 05/21

Visa 4005550000000001 05/21

Visa 4557012345678902 05/21

Amex 345678901234564 05/21

Diners Club 30123456789019 05/21

Response Codes
The test bank simulator is configured to allow the user to change the response received against the above test card numbers
by varying the amount after the decimal point for the transaction.

The following table shows how the various response codes can be triggered varying the amount after the decimal point.

QSI Resp. Name Amount

0 Transaction approved XXX.00

1 Transaction could not be processed XXX.10

2 Transaction declined - contact issuing bank XXX.05

3 No reply from Processing Host XXX.68

4 Card has expired XXX.33

5 Insufficient credit XXX.51

6 Error Communicating with Bank Not Mapped

QSI Resp. Name Caused by

7 Message Detail Error Invalid PAN, Invalid Expiry Date

8 Transaction declined – transaction type not supported Not Mapped

9 Bank Declined Transaction – Do Not Contact Bank Not Mapped

For example, to obtain a response of 1 on a MasterCard, simply send a transaction for $xxx.10 against one of the above
MasterCard numbers.

Developers should use these response codes in exception handling. For further detail on the reason for decline, the issuer
response code should be checked. See ‘Issuer Response Code Mapping’.

54 – 55

Issuer Response Code Mapping
The Payment Server returns both a summary result code generated by the Payment Server as well as the raw issuer response
code as received from the bank.

Digital Receipt Field Description

DigitalReceipt.vpc_TxnResponseCode Summary result code as returned from the Payment Server

DigitalReceipt.vpc_AcqResponseCode Issuer response code as returned from the bank

The following table is a list of relevant issuer response codes:

Issuer Resp. Description

00 Approved

01 Refer to Card Issuer

02 Refer to Card Issuer

03 Invalid Merchant

04 Pick Up Card

05 Do Not Honor

07 Pick Up Card

12 Invalid Transaction

14 Invalid Card Number (No such Number)

15 No Such Issuer

33 Expired Card

34 Suspected Fraud

36 Restricted Card

39 No Credit Account

41 Card Reported Lost

43 Stolen Card

51 Insufficient Funds

54 Expired Card

57 Transaction Not Permitted

59 Suspected Fraud

62 Restricted Card

65 Exceeds withdrawal frequency limit

91 Cannot Contact Issuer

The following table shows how the bank simulator maps the issuer response code to response codes.

Issuer Resp. MIGS Resp. Issuer Resp. MIGS Resp. Issuer Resp. MIGS Resp.

00 0 34 2 68 3

01 2 35 1 69 1

02 2 36 2 70 1

03 2 37 1 71 1

04 2 38 1 72 1

05 2 39 2 73 1

06 2 40 1 74 1

07 2 41 2 75 1

08 0 42 1 76 1

09 1 43 2 77 1

10 1 44 1 78 1

11 1 45 1 79 1

12 1 46 1 80 1

13 1 47 1 81 1

14 2 48 1 82 1

15 2 49 1 83 1

16 0 50 1 84 1

17 1 51 5 85 1

18 1 52 1 86 1

19 2 53 1 87 1

20 1 54 4 88 1

21 1 55 1 89 1

22 1 56 1 90 2

23 1 57 1 91 2

24 1 58 1 92 2

25 2 59 2 93 1

26 1 60 1 94 1

27 1 61 2 95 1

28 1 62 1 96 1

29 1 63 1 97 1

30 1 64 1 98 2

31 2 65 2 99 2

32 1 66 1

33 4 67 1

anz.com

A
ustralia and N

ew
 Zealand Banking G

roup Lim
ited (A

N
Z) A

BN
 11 005 357 522. Item

 N
o. 88476 06.2021 W

Z107857

